-
随着工业快速发展、城镇化比例提高,越来越多的易挥发、难降解有机污染物被释放到环境中[1]. 由于其普遍具有难降解的特性,其在环境及生物体内持久存在[2]. 同时,这些污染物可通过大气沉降、地表径流等进入水体[3],导致水环境污染的日益加重,并进一步通过食物链和生物积累的作用[4]最终对人类健康和生态环境产生严重的负面影响. 研究显示,持久性有机污染物的污染水平通常与该地区的工业化发展水平和其产业结构呈现正相关的关系[5]. 如上海某工业区内,大多数企业使用燃煤锅炉,其燃烧排放的污染物通过大气干湿沉降等积累到周边环境,导致区内土壤及地下水重金属、有机污染物含量超标严重,其中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)污染较为严重,浓度范围达到1.56—4.60 mg·kg−1,超标深度达到0—2 m[6]. 重庆某炼厂污染区域,多环芳烃含量较高,其超标倍数最高为1277.7 倍[7]. 在雨水冲刷及径流的作用下,国内大部分河流、湖泊及海域都已出现不同程度的持久性有机污染物污染,部分地区已存在潜在严重生态危害[8—10]. 因此,详细评估水环境中典型持久性有机污染物的污染及其风险,对于制定相关污染物控制措施是非常重要的.
PAHs 是一种含有2个及以上苯环的芳香烃化合物,及由其所衍生的复杂化合物的总称[11]. PAHs 是一种典型的持久性有机污染物,其中萘、苊、二氢苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽、苊、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并芘、二苯并蒽、苯并茈是美国环保署规定优先控制的污染物,具有致畸、致癌、致突变效应,可通过食物链及生物积累等作用进行传递,对生态环境、生物及人体健康造成极大的危害[12-13]. PAHs 中萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛等都是毒性大、致癌性强、难降解的污染物[11, 12]. PAHs 污染引起了人类社会的极大关注,由于具有积聚性、高毒性、迁移性等性质,PAHs 极易在生物体内富集,并通过生物放大效应导致各类神经、免疫和生殖系统疾病[14-15]. 有研究证明[8, 10],PAHs 可损害女性生殖系统,损害人体肺功能等对人类健康产生极大威胁.
珠江三角洲是我国经济最发达地区之一,由于人口密度大、城市密集、工业发达、近海船舶活动频繁等原因,珠江已成为珠三角生活污水入海的主要载体,珠江口已成为广东省中重度污染的主要海域[16-17]. 珠江口是珠江的河口湾,形如喇叭,由八大口门出海,分别为虎门、蕉门、洪奇门、横门(东四门)、磨刀门、鸡啼门、虎跳门和崖门(西四门). 珠江口八大口门是上游陆源污染物向南海输出的最后通道,珠江沿程的污染物经一系列生物、化学、物理过程后,最终经八大口门入海,各口门的污染物及其浓度直接影响着珠江口近海海域的水质[18]. 因此,该区域的水环境安全问题值得引起高度重视,然而目前,关于珠江口八大口门的持久性有机物污染及其相关环境问题的研究仍然较为有限.
为此,本研究选取10种优控 PAHs (萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛)为目标污染物,旨在阐明 PAHs 的污染水平和时空分布;分析其主要来源;评估其生态风险,以期为珠江口八大口门流域持久性有机物污染的控制、促进区域经济和环境协调发展提供数据支撑,为珠江三角洲水资源的可持续发展提供科学依据.
珠江口八大口门PAHs时空分布特征
Spatial and temporal characteristics of PAHs in the eight main entrances of Pearl River Estuary
-
摘要: 2019年2月、4月、8月和10月分别采集了珠江口八大口门入海口海水样品,采用气相色谱方法对10种多环芳烃(PAHs)(萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并蒽、䓛)进行定量源解析,PAHs的检出率较高,表明PAHs在八大口门海域水体中普遍存在. 在空间分布上,鸡啼门、虎门海域水体 PAHs 含量相对较高,蕉门、磨刀门、虎跳门和崖门居中,洪奇门和横门相对较少. 各口门 PAHs 含量呈现明显的表底分层现象,八大口门表层水 PAHs 的浓度范围为 ND—27260.00 ng·L−1,最大值出现在虎跳门4月份水样;底层水 PAHs 的浓度范围为ND—31175.00 ng·L−1,最大值出现在鸡啼门10月份水样. 在时间分布上,各口门表、底层海水PAHs 含量平均值均呈现出8月份最小的特征,是由于8月雨量大,雨水冲刷及径流作用增大,对入海口区域污染物进行一定程度的稀释. 从来源上看,八大口门海水中 PAHs 的来源主要为交通、煤焦油炼制、化石燃料的燃烧及加工炼制、木材燃烧、煤炭燃烧、油类不完全燃烧及油类泄漏混合污染等. 研究珠江口八大口门入海口水体多环芳烃污染情况,对珠江三角洲生态环境保护和治理具有重要意义.Abstract: In February, April, August, and October 2019, seawater samples were collected from the eight entrances of the Pearl River Estuary. Gas chromatography was used to quantitatively analyze 10 polycyclic aromatic hydrocarbons(PAHs) (naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzoanthracene, chrysene ). The detection rate of PAHs is high, indicating that PAHs are widespread in the water body of the eight entrances. In terms of spatial distribution, the content of PAHs in the waters of Jiti men and Hu men was relatively high, Jiao men, Modao men, Hutiao men, and Ya men were in the middle, and Hongqi men and Heng men were relatively few. The concentration of PAHs in the surface water of the eight gates ranged from ND—27260.00 ng·L−1, and the maximum value appeared in the water sample of Hutiao men in April. The concentration range of PAHs in bottom water was ND—31175.00 ng·L−1, and the maximum value appeared in the Jiti men water sample in October. In terms of time distribution, from the perspective of time distribution, the average value of PAHs content in the surface and bottom seawater of each entry shows the smallest feature in August, which is due to the large rainfall in August, the increase of rainwater erosion and runoff, and the dilution of pollutants in the estuary area to a certain extent. From the source point of view, the sources of PAHs in seawater are mainly traffic, coal tar refining, wood combustion, incomplete combustion of oil, coal combustion, and oil leakage mixed pollution of fossil fuel combustion and processing. It is of great significance to study the pollution of polycyclic aromatic hydrocarbons in the water body of the eight entrances of the Pearl River Estuary for the protection and treatment of the ecological environment in the Pearl River Delta.
-
Key words:
- Pearl River Estuary /
- eight main entrances /
- Into the sea /
- PAHs /
- time-space distribution
-
表 1 珠江口八大口门海水 PAHs 同族体检出情况(ng·L−1)
Table 1. PAHs in eight main entrances of Pearl River Estuary
PAHs组分
Component of PAHs虎门
Hu
men蕉门
Jiao
men洪奇门
Hongqi
men横门
Heng
men磨刀门
Modao
men鸡啼门
Jiti
men虎跳门
Hutiao
men崖门
Ya
men表层 2月 苊
Acenaphthene8430.00 11005.00 ND. ND. 9460.00 10005.00 12900.00 12965.00 芴
Fluorene3970.00 4195.00 ND. ND. ND. 2130.00 ND. 2235.00 苯并蒽
BenzanthraceneND. ND. ND. ND. ND. ND. ND. ND. 4月 苊
Acenaphthene5490.00 5300.00 5350.00 2940.00 ND. 7020.00 6670.00 4430.00 芴
Fluorene5050.00 4730.00 4960.00 4850.00 2515.00 5730.00 5235.00 6575.00 苯并蒽
Benzanthracene6000.00 9045.00 3105.00 6300.00 6700.00 12450.00 15355.00 ND. 8月 苊
AcenaphtheneND. ND. ND. ND. ND. ND. ND. ND. 芴
FluoreneND. ND. ND. ND. ND. ND. ND. ND. 苯并蒽
BenzanthraceneND. ND. ND. ND. ND. ND. ND. ND. 10月 苊
Acenaphthene6280.00 4115.00 ND. 3690.00 4460.00 8620.00 4515.00 7675.00 芴
Fluorene4080.00 5120.00 ND. 3135.00 3945.00 4465.00 3720.00 3645.00 苯并蒽
Benzanthracene16645.00 ND. ND. 4630.00 3780.00 4270.00 3545.00 ND. 底层 2月 苊
Acenaphthene12895.00 ND. ND. ND. 9010.00 10805.00 10295.00 7645.00 芴
Fluorene3765.00 ND. ND. ND. ND. 3880.00 ND. ND. 苯并蒽
BenzanthraceneND. ND. ND. ND. ND. ND. ND. ND. 4月 苊
Acenaphthene2505.00 6300.00 ND. 3365.00 ND. ND. 6150.00 ND. 芴
Fluorene2300.00 5385.00 ND. 5360.00 7790.00 ND. 4565.00 ND. 苯并蒽
Benzanthracene8945.00 ND. ND. 7720.00 11355.00 7350.00 10515.00 7375.00 8月 苊
AcenaphtheneND. ND. ND. ND. ND. ND. ND. ND. 芴
FluoreneND. ND. ND. 4850.00 ND. ND. ND. ND. 苯并蒽
BenzanthraceneND. ND. ND. ND. ND. ND. ND. ND. 10月 苊
Acenaphthene9740.00 ND. ND. ND. ND. 12770.00 5075.00 6760.00 芴
Fluorene4315.00 ND. ND. ND. ND. 9000.00 3480.00 5500.00 苯并蒽
BenzanthraceneND. ND. ND. ND. ND. 9310.00 3840.00 4810.00 ND.,未检出. 表 2 与国内水域 PAHs 浓度比较
Table 2. Comparison of species and concentrations of PAHs in the surface water of various estuary and coastal
区域
Regional浓度范围/(ng·L−1)
Concentration平均值/(ng·L−1)
Mean value参考文献
Reference长江口Yangtze Estuary 172.60―2441.20 ― [32] 东江Dongjiang River 469.10―677.30 586.3 [33] 松花江Songhua River 1.23―92,899.00 9180.05 [34] 辽河Liao River 55.65―5700.00 3498.86 [34] 海河Hai River 31.70―401.25 104.78 [34] 淮河Huai River 79.94―9050.00 2795.25 [34] 黄河Yellow River 4.98―6610.00 950.18 [34] 长江中游支流Middle Yangtze River 20.80―90.40 40.70 [35] 太湖Taihu Lake 238.00―7422.00 1592.00 [36] 银川湿地Yinchuan Wetland 818.69―2538.84 1623.14 [37] 盐城滨海湿地Yancheng Coastal Wetlands 227.00―884.00 479.0 [38] 广东海珠湿地Haizhu Wetland, Guangdong 139.00―1134.00 ― [39] 辽东湾Liaodong Bay 106.80―468.10 367.4 [40] 渤海湾Bohai Bay 48.00―607.00 ― [41-42] 胶州湾Jiaozhou Bay 23.60―86.20 ― [43] 洋浦湾Yangpu Bay 528.80―2208.30 ― [44] 大亚湾Daya Bay 4228.00―29,325.00 ― [45] 珠江口八大口门Eight main entrances of Pearl River Estuary ND―24,265.00 ― 本研究 -
[1] 刘玉灿, 田一, 苏庆亮, 等. 我国地表水污染现状与防治策略探索 [J]. 净水技术, 2021, 40(11): 62-70. doi: 10.15890/j.cnki.jsjs.2021.11.009 LIU Y C, TIAN Y, SU Q L, et al. Current situation and control strategy of surface water pollution at home [J]. Water Purification Technology, 2021, 40(11): 62-70(in Chinese). doi: 10.15890/j.cnki.jsjs.2021.11.009
[2] 刘璐, 孙启智, 刘章华, 等. 水环境中微塑料的迁移及其与有机污染物的复合毒性效应研究进展 [J]. 环境化学, 2022, 41(5): 1504-1514. doi: 10.7524/j.issn.0254-6108.2021070904 LIU L, SUN Q Z, LIU Z H, et al. Migration of microplastics and their combined toxic effects with organic pollutants in water environment: A review [J]. Environmental Chemistry, 2022, 41(5): 1504-1514(in Chinese). doi: 10.7524/j.issn.0254-6108.2021070904
[3] 鲍茜, 郑姚颖, 沈大航, 等. 十溴二苯乙烷的污染现状及环境行为研究进展 [J]. 环境化学, 2022, 41(6): 1905-1919. doi: 10.7524/j.issn.0254-6108.2021020202 BAO Q, ZHENG Y Y, SHEN D H, et al. Research progress on the pollution status and environmental behaviors of decabromodiphenyl ethane [J]. Environmental Chemistry, 2022, 41(6): 1905-1919(in Chinese). doi: 10.7524/j.issn.0254-6108.2021020202
[4] 张贞莹, 温蓓, 黄红林, 等. 脂环族溴代阻燃剂的生物富集、代谢及毒性效应研究进展 [J]. 环境化学, 2022, 41(5): 1480-1503. doi: 10.7524/j.issn.0254-6108.2021102902 ZHANG Z Y, WEN B, HUANG H L, et al. Research progress on bioconcentration, metabolism and toxicity of cycloaliphatic brominated flame retardant isomers [J]. Environmental Chemistry, 2022, 41(5): 1480-1503(in Chinese). doi: 10.7524/j.issn.0254-6108.2021102902
[5] 姬庆松, 孔祥程, 王信凯, 等. 环境微塑料与有机污染物的相互作用及联合毒性效应研究进展 [J]. 环境化学, 2022, 41(1): 70-82. doi: 10.7524/j.issn.0254-6108.2020090303 JI Q S, KONG X C, WANG X K, et al. The interaction and combined toxic effects of microplastics and organic pollutants in the environment: A review [J]. Environmental Chemistry, 2022, 41(1): 70-82(in Chinese). doi: 10.7524/j.issn.0254-6108.2020090303
[6] 张运超, 任路遥. 某化工企业地块土壤污染修复效果评估 [J]. 广州化工, 2022, 50(12): 115-117,120. doi: 10.3969/j.issn.1001-9677.2022.12.034 ZHANG Y C, REN L Y. Evaluation on remediation effect of soil pollution in A chemical enterprise plot [J]. Guangzhou Chemical Industry, 2022, 50(12): 115-117,120(in Chinese). doi: 10.3969/j.issn.1001-9677.2022.12.034
[7] 舒心, 胡培良, 李东阳, 等. 某炼铁厂汞和多环芳烃复合污染土壤热脱附试验研究 [J]. 广东化工, 2022, 49(14): 90-93,127. doi: 10.3969/j.issn.1007-1865.2022.14.032 SHU X, HU P L, LI D Y, et al. Experimental study on thermal desorption of mercury and polycyclic aromatic hydrocarbons composite contami nated soil in an ironmaking plant [J]. Guangdong Chemical Industry, 2022, 49(14): 90-93,127(in Chinese). doi: 10.3969/j.issn.1007-1865.2022.14.032
[8] HAN F L, GUO H, HU J L, et al. Sources and health risks of ambient polycyclic aromatic hydrocarbons in China [J]. Science of the Total Environment, 2020, 698: 134229. doi: 10.1016/j.scitotenv.2019.134229 [9] MENG Y, LIU X H, LU S Y, et al. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China [J]. Science of the Total Environment, 2019, 651: 2497-2506. doi: 10.1016/j.scitotenv.2018.10.162 [10] SHARMA M D, ELANJICKAL A I, MANKAR J S, et al. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons [J]. Journal of Hazardous Materials, 2020, 398: 122994. doi: 10.1016/j.jhazmat.2020.122994 [11] 刘良叙, 李朝风, 王嘉伟, 等. 芳香类天然产物的合成生物学研究进展 [J]. 生物工程学报, 2021, 37(6): 2010-2025. doi: 10.13345/j.cjb.210074 LIU L X, LI C F, WANG J W, et al. Synthetic biology for the synthesis of aromatic natural products: A review [J]. Chinese Journal of Biotechnology, 2021, 37(6): 2010-2025(in Chinese). doi: 10.13345/j.cjb.210074
[12] 张文博, 刘宾绪, 江涛, 等. 环渤海渔港沉积物多环芳烃的污染特征和生态风险评价 [J]. 环境化学, 2022, 41(2): 561-571. doi: 10.7524/j.issn.0254-6108.2021030701 ZHANG W B, LIU B X, JIANG T, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from fishing ports along the coast of Bohai Sea [J]. Environmental Chemistry, 2022, 41(2): 561-571(in Chinese). doi: 10.7524/j.issn.0254-6108.2021030701
[13] 田芹, 佟玲, 安子怡, 等. 沉积物中多环芳烃、有机氯农药和多氯联苯成分分析标准物质研制 [J]. 岩矿测试, 2022, 41(3): 511-520. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203016 TIAN Q, TONG L, AN Z Y, et al. Development of certified reference materials of polycyclic aromatic hydrocarbons, organochlorine pesticides and polychlorinated biphenyls in sediments [J]. Rock and Mineral Analysis, 2022, 41(3): 511-520(in Chinese). doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203016
[14] ABBASSY M A, KHALIFA M A, NASSAR A M K, et al. Analysis of organochlorine pesticides residues in fish from Edko Lake (North of Egypt) using eco-friendly method and their health implications for humans [J]. Toxicological Research, 2021, 37(4): 495-503. doi: 10.1007/s43188-020-00085-8 [15] YIN S J, SUN Y, YU J H, et al. Prenatal exposure to organochlorine pesticides is associated with increased risk for neural tube defects [J]. Science of the Total Environment, 2021, 770: 145284. doi: 10.1016/j.scitotenv.2021.145284 [16] 刘太胜, 姜沄林, 陆尧, 等. 珠江口海域沉积物中总氮总磷的空间分布特征 [J]. 广东化工, 2021, 48(16): 148-149. doi: 10.3969/j.issn.1007-1865.2021.16.061 LIU T S, JIANG Y L, LU Y, et al. Spatial distribution and pollution status of total nitrogen and total Phosphorus in sediments of Pearl River Estuary and its adjacent area [J]. Guangdong Chemical Industry, 2021, 48(16): 148-149(in Chinese). doi: 10.3969/j.issn.1007-1865.2021.16.061
[17] 袁蕾, 张纯超, 吕彦儒. 珠江口水体TOC与COD关系研究 [J]. 海洋环境科学, 2015, 34(5): 700-705. doi: 10.13634/j.cnki.mes.2015.05.010 YUAN L, ZHANG C C, LV Y R. Correlation analysis between TOC and COD in Pearl River Estuary [J]. Marine Environmental Science, 2015, 34(5): 700-705(in Chinese). doi: 10.13634/j.cnki.mes.2015.05.010
[18] 袁国明, 何桂芳, 林端. 珠江八大口门污染物浓度变化及成因分析 [J]. 海洋环境科学, 2009, 28(5): 553-557. doi: 10.3969/j.issn.1007-6336.2009.05.018 YUAN G M, HE G F, LIN D. Pollutant concentration variation and analysis of causes in Eight Major Outlet of Pearl Rive [J]. Marine Environmental Science, 2009, 28(5): 553-557(in Chinese). doi: 10.3969/j.issn.1007-6336.2009.05.018
[19] 国家质量技术监督局. 中华人民共和国国家标准 GB 17378.2-2007 海洋监测规范 第2部分: 数据处理与分析质量控制[J]. National Bureau of Quality and Technical Supervision. National Standards of the People 's Republic of China. GB 17378.2-2007 The specification for marine monitoring— Part 3: Sample collection, storage and transportation
[20] 平立凤, 骆永明. 有机质对多环芳烃环境行为影响的研究进展 [J]. 土壤, 2005, 37(4): 362-369. doi: 10.3321/j.issn:0253-9829.2005.04.003 PING L F, LUO Y M. Effects of organic matter on environmental behaviors of polycyclic aromatic hydrocarbons [J]. Soils, 2005, 37(4): 362-369(in Chinese). doi: 10.3321/j.issn:0253-9829.2005.04.003
[21] KONG J J, DAI Y X, HAN M S, et al. Nitrated and parent PAHs in the surface water of Lake Taihu, China: Occurrence, distribution, source, and human health risk assessment [J]. Journal of Environmental Sciences, 2021, 102: 159-169. doi: 10.1016/j.jes.2020.09.025 [22] ZHU Y X, LIANG B, XIA W W, et al. Assessing potential risks of aquatic polycyclic aromatic compounds via multiple approaches: A case study in Jialing and Yangtze Rivers in downtown Chongqing, China [J]. Environmental Pollution, 2022, 294: 118620. doi: 10.1016/j.envpol.2021.118620 [23] 张学浪, 潘泽瀚. 城镇化进程中的农村人口转移与分布空间 [J]. 华南农业大学学报(社会科学版), 2014, 13(4): 88-100. ZHANG X L, PAN Z H. Rural population transfer and distribution space in urbanization process [J]. Journal of South China Agricultural University (Social Science Edition), 2014, 13(4): 88-100(in Chinese).
[24] 马莉莎. 珠三角城市群空间扩展研究 [J]. 江西建材, 2017(9): 34-35. doi: 10.3969/j.issn.1006-2890.2017.09.027 MA L S. Study on spatial expansion of Pearl River Delta urban agglomeration [J]. Jiangxi Building Materials, 2017(9): 34-35(in Chinese). doi: 10.3969/j.issn.1006-2890.2017.09.027
[25] 杨北辰, 解启来, 郑芊等. 新疆典型地区植物和土壤多环芳烃污染特征、来源解析及健康风险评价 [J]. 环境科学, 2022,43(12): 5751-5760. doi: 10.13227/j.hjkx.202112229 YANG B C, JIE Q L, ZHENG Q, et al. Occurence, source analysis, and health risks of polycyclic aromatic hydrocarbons in plants and soils from typical areas of Xinjiang, China [J]. Environmental Science, 2022,43(12): 5751-5760(in Chinese). doi: 10.13227/j.hjkx.202112229
[26] MACKAY D. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals[M]. 2nd ed. Boca Raton, FL: CRC/Taylor & Francis, 2006 [27] ZHANG Y, DOU H, CHANG B, et al. Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China [J]. Annals of the New York Academy of Sciences, 2008, 1140: 218-227. doi: 10.1196/annals.1454.006 [28] 李亮, 郝峰, 石艳菊. 热脱附-气相色谱/质谱法测定环境空气中苯酚、萘、苊和芴 [J]. 环境与发展, 2022, 34(4): 126-130,143. doi: 10.16647/j.cnki.cn15-1369/X.2022.04.019 LI L, HAO F, SHI Y J. Determination of phenol, naphthalene, acenaphthene, fluorene in environmental air by gas chromatography/mass spectrometry coupled with automated thermal desorption [J]. Environment and Development, 2022, 34(4): 126-130,143(in Chinese). doi: 10.16647/j.cnki.cn15-1369/X.2022.04.019
[29] 杨梦茹, 徐雄, 王东红等. 长江典型江段水体多环芳烃的分布特征、来源及其生态风险评价 [J]. 中国环境科学, 2022,42(12): 5308-5317. doi: 10.3969/j.issn.1000-6923.2022.01.001 YANG M R, XU X, WANG D H, et al. Distribution characteristics, source and ecological risks assessment of Polycyclic Aromatic Hydrocarbons in water bodies of typical sections of the Yangtze River [J]. China Environmental Science, 2022,42(12): 5308-5317(in Chinese). doi: 10.3969/j.issn.1000-6923.2022.01.001
[30] 张鸿龄, 孙丽娜, 孙铁珩, 等. 浑河水环境中多环芳烃(PAHs)污染来源解析 [J]. 沈阳大学学报(自然科学版), 2013, 25(2): 87-91. ZHANG H L, SUN L N, SUN T H, et al. Sources of polycyclic aromatic hydrocarbons (PAHs) in surface water from Hunhe River [J]. Journal of Shenyang University (Natural Science), 2013, 25(2): 87-91(in Chinese).
[31] 王璟, 王春江, 赵冬至, 等. 渤海湾和黄河口外表层海水中芳烃的组成、分布及来源 [J]. 海洋环境科学, 2010, 29(3): 406-410. doi: 10.3969/j.issn.1007-6336.2010.03.026 WANG J, WANG C J, ZHAO D Z, et al. Composition, distribution and source of polycyclic aromatic hydrocarbons in surface water of Bohai Bay and outside Huanghe Estuary [J]. Marine Environmental Science, 2010, 29(3): 406-410(in Chinese). doi: 10.3969/j.issn.1007-6336.2010.03.026
[32] 王成龙. 长江流域—河口—近海环境中多环芳烃分布特征及影响因素研究[D]. 南京: 南京大学, 2017. WANG C L. Studies on the distribution characteristics and its influencing factors of polycyclic aromatic hydrocarbons in Changjiang River-estuary-sea system[D]. Nanjing: Nanjing University, 2017(in Chinese).
[33] 胡俊杰, 兰善红, 康耿等. 东江流域典型毒害有机污染物的污染特征、来源及生态风险 [J]. 环境科学学报, 2022,42(11): 147-155. doi: 10.13671/j.hjkxxb.2022.0147 HU J J, LAN S H, KANG G, et al. Pollution, source and ecological risk assessment of typical toxic organic pollutants in the Dongjiang River [J]. Acta Scientiae Circumstantiae, 2022,42(11): 147-155(in Chinese). doi: 10.13671/j.hjkxxb.2022.0147
[34] 范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价 [J]. 环境科学, 2019, 40(5): 2101-2114. doi: 10.13227/j.hjkx.201809034 FAN B, WANG X N, HUANG Y, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in seven basins of China [J]. Environmental Science, 2019, 40(5): 2101-2114(in Chinese). doi: 10.13227/j.hjkx.201809034
[35] 董磊, 汤显强, 林莉, 等. 长江武汉段丰水期水体和沉积物中多环芳烃及邻苯二甲酸酯类有机污染物污染特征及来源分析 [J]. 环境科学, 2018, 39(6): 2588-2599. doi: 10.13227/j.hjkx.201710014 DONG L, TANG X Q, LIN L, et al. Pollution characteristics and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters during high water level periods in the Wuhan section of the Yangtze River, China [J]. Environmental Science, 2018, 39(6): 2588-2599(in Chinese). doi: 10.13227/j.hjkx.201710014
[36] 李涛, 王玉, 徐枫, 等. 太湖流域地表水中多环芳烃的来源解析及风险评价 [J]. 环境科学与技术, 2018, 41(11): 198-204. doi: 10.19672/j.cnki.1003-6504.2018.11.031 LI T, WANG Y, XU F, et al. Pollution characteristics, source apportionment and risk assessment of polycyclic aromatic hydrocarbons in surface water from Taihu Lake Basin [J]. Environmental Science & Technology, 2018, 41(11): 198-204(in Chinese). doi: 10.19672/j.cnki.1003-6504.2018.11.031
[37] 田大年, 党丽慧, 丁润梅, 等. 银川市湿地表层水中多环芳烃的分布、来源及生态风险评价 [J]. 环境科学, 2019, 40(7): 3068-3077. doi: 10.13227/j.hjkx.201812096 TIAN D N, DANG L H, DING R M, et al. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the surface waters of the Yinchuan wetlands [J]. Environmental Science, 2019, 40(7): 3068-3077(in Chinese). doi: 10.13227/j.hjkx.201812096
[38] 蔡杨, 李伟, 左雪燕, 等. 盐城滨海湿地土壤多环芳烃分布特征及影响因素 [J]. 生态环境学报, 2021, 30(6): 1249-1259. doi: 10.16258/j.cnki.1674-5906.2021.06.016 CAI Y, LI W, ZUO X Y, et al. Distribution characteristics and influencing factors of PAHs in Yancheng coastal wetland soil [J]. Ecology and Environmental Sciences, 2021, 30(6): 1249-1259(in Chinese). doi: 10.16258/j.cnki.1674-5906.2021.06.016
[39] 李海燕, 赖子尼, 曾艳艺, 等. 广东典型湿地环境沉积物及鱼体中多环芳烃的污染特征及风险评估 [J]. 生态毒理学报, 2019, 14(5): 296-307. LI H Y, LAI Z N, ZENG Y Y, et al. Pollution characteristics and risk assessment of PAHs in sediments and fishes from typical wetlands of Guangdong Province [J]. Asian Journal of Ecotoxicology, 2019, 14(5): 296-307(in Chinese).
[40] 张玉凤, 吴金浩, 宋永刚, 等. 辽东湾海水中PAHs分布与来源特征及风险评估 [J]. 环境科学研究, 2017, 30(6): 892-901. doi: 10.13198/j.issn.1001-6929.2017.02.31 ZHANG Y F, WU J H, SONG Y G, et al. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater in Liaodong Bay, China [J]. Research of Environmental Sciences, 2017, 30(6): 892-901(in Chinese). doi: 10.13198/j.issn.1001-6929.2017.02.31
[41] QIAN X, LIANG B C, FU W J, et al. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the intertidal zone of Bohai Bay, Northeast China: Spatial distribution, composition, sources and ecological risk assessment [J]. Marine Pollution Bulletin, 2016, 112(1/2): 349-358. [42] TONG Y F, CHEN L, LIU Y, et al. Distribution, sources and ecological risk assessment of PAHs in surface seawater from coastal Bohai Bay, China [J]. Marine Pollution Bulletin, 2019, 142: 520-524. doi: 10.1016/j.marpolbul.2019.04.004 [43] SUN J W, PAN L Q, CAO Y H, et al. Biomonitoring of polycyclic aromatic hydrocarbons (PAHs) from Manila clam Ruditapes philippinarum in Laizhou, Rushan and Jiaozhou, bays of China, and investigation of its relationship with human carcinogenic risk [J]. Marine Pollution Bulletin, 2020, 160: 111556. doi: 10.1016/j.marpolbul.2020.111556 [44] LI P, CAO J, DIAO X P, et al. Spatial distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater from Yangpu Bay, China [J]. Marine Pollution Bulletin, 2015, 93(1/2): 53-60. [45] SUN R X, LIN Q, KE C L, et al. Polycyclic aromatic hydrocarbons in surface sediments and marine organisms from the Daya Bay, South China [J]. Marine Pollution Bulletin, 2016, 103(1/2): 325-332. [46] 吴鹏, 刘永, 肖雅元, 等. 春季珠江口万山群岛毗邻海域渔业生态环境状况评价 [J]. 南方水产科学, 2022, 18(5): 1-8. doi: 10.12131/20210332 WU P, LIU Y, XIAO Y Y, et al. Evaluation of fisheries ecological environment in adjacent sea areas of Wanshan Archipelago in Pearl River Estuary in spring [J]. South China Fisheries Science, 2022, 18(5): 1-8(in Chinese). doi: 10.12131/20210332
[47] TAO W, NIU L X, DONG Y H, et al. Nutrient pollution and its dynamic source-sink pattern in the Pearl River Estuary (south China) [J]. Frontiers in Marine Science, 2021, 8: 713907. doi: 10.3389/fmars.2021.713907