-
根际(rhizosphere)是连接植物、土壤和微生物的核心,是土壤形成、碳循环和地球陆地生态系统最终生产力的基础,同时也是微生物在土壤中活动的关键场所[1-4]. 根际的概念是1904年德国科学家Hilter首次提出. 由此,根际化学与生物学过程的相关研究已经经历了一百多年[5]. 可以确定,根际是植物、土壤和微生物与环境交互作用的中心,是生物化学过程耦合最活跃的区域[6].
植物根系通过根系分泌、呼吸作用、养分吸收等各种形式和途径将有机或者无机化合物释放到周围土壤,进行着植物与土壤间物质交换的重要的界面过程,创造了根际区独特的化学环境. 并且,这些物质在化学上具有多样性,从简单的低分子量的有机酸、糖、氨基酸,到复杂的维生素和植物激素;还有大分子的多种碳水化合物、肽和蛋白质,以及根组织的脱落物等[7](表1).
随着植物种属、发育进程、营养、土壤类型、环境特征及其他因素的改变,根系分泌物的组成也随之而变化[8],即根系分泌不是均匀或静态的. 植物通过根系分泌物这个重要的媒介与外界进行物质交流,根系分泌组成从根本上决定了根际的化学多样性. 其次,根际微生物涵盖细菌、真菌、藻类、原生动物等[9],其在数量上为根际外土壤的几至几十倍,存在着显著的多样性和复杂性. 大量微生物聚集于根系周围,将有机物分解转化为植物可以吸收的养分;同时,植物生长过程中的根系分泌物、死根、根脱落物能够给予微生物必需的营养和能量[10]. 而且,根际微生物群即使在同一植物的不同品种也可表现出其高度的特异性[11]. 经过长达数亿年的共同进化,根际微域中植物与地下生物,尤其是微生物之间产生了繁杂的动态互作关系,即为根际效应[1,12-13]. 已证明根系分泌物会调控土壤微生物群落的组成、结构和功能[14]. 这表明,植物根系在不同时空分泌的物质特异性、种类和数量都可能介导了微生物群落的组装模式[15]. 但是,根系分泌物的化学性质和微生物底物的偏好性如何驱动根际微生物群落的构成与演替及其机制还需要深入的探讨[8]. 目前,受研究方法的局限,人们对根际中植物与微生物复杂的相互作用的认识还非常欠缺. 本文综述了根际化学与生物学方法的最新进展,重点阐述了组学技术在根际科学研究中的机遇与挑战,强调了其在相关尺度上揭示根际过程与机制的必要性.
根际化学与生物多样性的表征方法:组学技术的机遇与挑战
Characterization methods of rhizosphere chemo- and biodiversity: Opportunities and challenges of omics technology
-
摘要: 根际是联结植物、土壤和微生物的重要界面,是化学与生物过程耦合最活跃的区域. 根际环境影响土壤中有机和无机污染物的行为,而研究方法的完善与提升有助于阐释根际中复杂的过程与作用机制. 本文从传统的化学和生物学方法到新兴的组学技术对根际科学的方法学研究进展进行了综述,重点讨论了当今组学技术在根际研究中应用机遇与挑战,同时展望了今后需要关注的科学问题. 根际化学组分的传统分析方法涵盖了光谱、色谱、质谱和色质联用等技术,主要聚焦于低分子量有机酸等小分子的定性定量测定,导致对根际化学多样性的认知偏差;传统的根际微生物研究依赖于培养技术,对微生物多样性的描述存在很大的局限. 揭示根际异质性和复杂性,亟需采用高端的技术,组学方法显示出极大的优势,显著提高了研究者对根际科学的认识. 基于靶向和非靶向代谢组学有利于深入研究根际复杂的化学多样性过程;基于宏基因组学、转录组学和蛋白组学等组学工具能够提供微生物组基因和蛋白的表达、功能特性等更详细的信息,可以全面地揭示根际微生物的多样性. 应该强调的是,未来多组学整合分析更是表征根际化学与生物多样性的一个强有力工具,但需要更多的模型、框架和计算基础来实现根际基因、蛋白、转录和代谢水平的多层次关联,以助于挖掘根-微生物-土壤界面大量尚未揭示的关键过程、机理及生态环境效应.Abstract: Rhizosphere is an important interface between plants, soil, microorganisms, and their environment. It is the most active area of biochemical coupling processes. Rhizosphere environment can affect the behaviors of organic and inorganic pollutants in the soil. Research methods should be further improved to explain the complex biochemical mechanisms in the rhizosphere. This paper reviews the progress of methodological research in the rhizosphere science, from traditional chemical and biological methods to emerging omics technologies, focuses on the application and challenges of omics technology in rhizosphere research so far, and looks forward to the scientific issues that need attention in the future. The traditional analysis methods of chemical components in the rhizosphere include spectroscopy, chromatography, and their combination with mass spectrometry. These methods simply pay attention to the qualitative and quantitative determination of small molecules, such as low molecular weight organic acids, which leads to a deviation in the understanding of the rhizosphere chemical diversity. The traditional research on rhizosphere microorganisms relies on the cultivation techniques, and there are great limitations in the investigation of microbial diversity. Research on heterogeneity and complexity of rhizosphere requires the use of advanced techniques. Omics technologies show great advantages and can significantly improve our understanding of rhizosphere science. Targeted and non-targeted metabolomics methods facilitate insight into the complex chemically diversity processes in the rhizosphere. Based on metagenomics, transcriptomics, proteomics, and other omics methods, it can provide more detailed information on the expression and functional characteristics of microbiome genes and proteins, and comprehensively reveal the diversity of rhizosphere microorganisms. In the future, it should be emphasized that the integrated multi-omics analysis will be a more powerful tool to characterize the chemistry and biodiversity in the rhizosphere. However, more models, frameworks and computational foundations are needed to achieve multi-associations at gene, protein, transcriptional and metabolic levels, to uncover many yet-to-be-revealed key processes, mechanisms, and eco-environmental effects in the root-microbe-soil interface.
-
Key words:
- rhizosphere /
- chemo- and biodiversity /
- analytical methods /
- omics technology.
-
表 1 根际主要化合物的来源、种类及组成
Table 1. Source,category and composition of the main compounds in the rhizosphere
化合物来源
Chemical source分子量
Molecular weight化合物类别
Compound category主要组成
Composition根系分泌物
渗出物
植物组织和细胞脱落物
分解物
植物残体
黏质物低分子量化合物 有机酸 草酸、乙酸、苹果酸、柠檬酸、酒石酸、 丙二酸、丁酸、乳酸、马来酸、乙醛酸、 延胡索酸、水杨酸 氨基酸 精氨酸、赖氨酸、甲硫氨酸、络氨酸、脯氨酸、组氨酸、丙氨酸、天冬氨酸、精氨酸 糖 果糖、蔗糖、葡萄糖、木糖、鼠李糖、阿拉伯糖、麦芽糖、棉子糖、半乳糖、低聚糖、多糖 酚 苯甲酸、阿魏酸、氢氰酸、肉桂酸、没食子酸、皂角苷、香兰素、香草酸 高分子量化合物 蛋白质和酶 多肽、蛋白酶、葡萄糖酶、转化酶、硝酸酶、淀粉酶、凝集素、磷酸酯酶、水解酶、过氧化物酶、脂肪酶、PR蛋白质 脂肪酸 亚麻酸、棕榈酸、油酸、硬脂酸 生长因子 生物素、维生素、植物激素、泛酸、胆碱 类固醇 胆固醇、豆甾醇、谷甾醇 其他 黄酮类、植物抗毒素、核苷 表 2 组学方法在根际科学研究中的汇总
Table 2. Summary of the omics analysis in the study of rhizosphere science
组学方法
Omics method主要分析技术与平台
Main technology and platform研究内容
Item determination优点和局限性
Advantages and limitations已应用的植物
Plant applied文献
Reference代谢组学
Metabonomics核磁共振(NMR)
高分辨质谱及其联用技术:气相色谱-质谱联用(GC-MS)、液相色谱-质谱联用(LC-MS)、傅立叶变换离子回旋共振质谱(FT-ICR-MS)、离子阱静电轨道质谱(Orbitrap MS)根际小分子代谢组
(<1 kD)、根际化学通讯NMR对样品无损伤且重复性好,但灵敏度相对较低;GC-MS分离效果好、灵敏度高,但样品需衍生化;LC-MS灵敏度较高,样品无需衍生化,但分析时间长,分离效率较低;目前根际时空动态监测难实现,需开发精确取样技术和优化分析方案,开发高质量可靠的标准数据库及标准操作流程 东南景天、
黄瓜、拟南芥
玉米、紫花苜蓿、南瓜、
小麦、大豆、黑麦草[16,56,65,68-71,78] 基因组学
Genomics高通量测序和微阵列技术:
下一代测序平台(NGS)
基因芯片
基于PCR的高通量测序根际微生物多样性、功能基因组、结构基因组和比较基因组 突破有些微生物不可培养的局限,快速高效地获取植物根际专属微生物群落的详细信息,但成本高、数据分析复杂、基因表达改变不显著等 拟南芥、红树林、白骨壤、水稻、百里香 [85-88,93-95] 转录组学
Transcriptomics基因表达序列分析(SAGE)
DNA 微阵列(DNA microarray)
转录组测序(RNA-Seq)
下一代测序平台(NGS)根际微生物群落结构、推断根际核心微生物群落及其代谢潜力,阐释植物-微生物相互作用 关注整个微生物群落中的基因表达,并解释特定环境中微生物种群的动态功能,高通量、高灵敏度、高准确性和低运营成本,但存在数据量庞大带来信息学难题,特定RNA亚型表达的识别和追踪难等缺陷 拟南芥、燕麦、豌豆、小麦、拟南芥、柳树 [87-91,5,97-99] 蛋白组学
Proteomics蛋白质分离技术:双向电泳(2-DE)、超高效液相色谱(UPLC)
蛋白质鉴定技术:基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)、电喷雾电离质谱(ESI-MS)、相对和绝对定量的同位素标签(i TRAQ)或串联质量标签法(TMT)表征根际蛋白质谱的变化、蛋白质组成、表达水平、翻译后修饰及蛋白质之间的相互作用 在蛋白水平上为土壤生态系统的生物过程提供了直接证据,但低丰度蛋白信息的获取困难,根际存在高度的生物多样性、蛋白质冗余以及蛋白提取困难等普遍问题 水稻、糯稻、地黄、太子参、异叶松、甘蔗、烟草、西红柿 [104-106,108-111] 多组学
Multi-omics转录组和蛋白组整合
转录组和代谢组整合
蛋白组学和代谢组整合
转录组、蛋白组与代谢组等多者整合从基因、RNA、蛋白质和代谢产物对根际多层面的数据整合,系统分析 突破单一组学研究瓶颈,获得更全面、聚焦地目标通路或靶基因/蛋白,但根际多组学数据庞大复杂,平行样品管理和软件发展速度难,需开发先进取样程序、模型、框架和计算方法 水稻、
颤杨[106,119,120-121] -
[1] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nature Microbiology, 2018, 3(4): 470-480. doi: 10.1038/s41564-018-0129-3 [2] FISCHER H, ECKHARDT K U, MEYER A, et al. Rhizodeposition of maize: Short-term carbon budget and composition [J]. Journal of Plant Nutrition and Soil Science, 2010, 173(1): 67-79. doi: 10.1002/jpln.200800293 [3] VENTURI V, KEEL C. Signaling in the rhizosphere [J]. Trends in Plant Science, 2016, 21(3): 187-198. doi: 10.1016/j.tplants.2016.01.005 [4] 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望 [J]. 植物生态学报, 2018, 42(11): 1055-1070. doi: 10.17521/cjpe.2018.0156 YIN H J, ZHANG Z L, LIU Q. Root exudates and their ecological consequences in forest ecosystems: Problems and perspective [J]. Chinese Journal of Plant Ecology, 2018, 42(11): 1055-1070(in Chinese). doi: 10.17521/cjpe.2018.0156
[5] MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiology Reviews, 2013, 37(5): 634-663. doi: 10.1111/1574-6976.12028 [6] THIJS S, SILLEN W, RINEAU F, et al. Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: Engineering the metaorganism [J]. Frontiers in Microbiology, 2016, 7: 341. [7] 苗月霞. 植物根系分泌物的超高分辨率质谱分子表征与微生物代谢研究 [D]. 北京: 中国科学院大学, 2020. MIAO Y X. Molecular characterization by FT-ICR MS and microbial metabolism of root exudates[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese).
[8] LEFF J W, LYNCH R C, KANE N C, et al. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus [J]. New Phytologist, 2017, 214(1): 412-423. doi: 10.1111/nph.14323 [9] AINSWORTH E A, GILLESPIE K M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent [J]. Nature Protocols, 2007, 2(4): 875-877. doi: 10.1038/nprot.2007.102 [10] 杜静, 杨家学, 焦晓林, 等. 氮、磷、钾缺乏对西洋参根分泌物中酚酸类化合物的影响 [J]. 中国中药杂志, 2011, 36(3): 326-329. DU J, YANG J X, JIAO X L, et al. Effect of nitrogen, phosphorus and potassium deficiency on content of phenolic compounds in exudation of American ginseng [J]. China Journal of Chinese Materia Medica, 2011, 36(3): 326-329(in Chinese).
[11] WANG J X, DING Z J, BIAN J, et al. Chemotaxis response of Meloidogyne incognita to volatiles and organic acids from root exudates [J]. Rhizosphere, 2021, 17: 100320. doi: 10.1016/j.rhisph.2021.100320 [12] 梁坤, 樊玉清, KUDAKWASHE MEKI, 等. 黄河口湿地典型盐碱植被群落土壤氮素的季节动态及根际效应 [J]. 环境化学, 2019, 38(10): 2327-2335. doi: 10.7524/j.issn.0254-6108.2018120301 LIANG K, FAN Y Q, MEKI K, et al. The seasonal dynamics of nitrogen and rhizosphere effects in the typical saline-alkali vegetation communities of the Yellow River Estuary wetland [J]. Environmental Chemistry, 2019, 38(10): 2327-2335(in Chinese). doi: 10.7524/j.issn.0254-6108.2018120301
[13] 程俊伟, 蔡深文, 黄明琴, 等. 贵州遵义锰矿区植物根际土壤中重金属形态迁移转化及风险评价 [J]. 环境化学, 2022, 41(9): 2833-2841. doi: 10.7524/j.issn.0254-6108.2021050606 CHENG J W, CAI S W, HUANG M Q, et al. Heavy metal speciation migration transformation and risk assessment in plant rhizosphere soil of Zunyi manganese mineland, Guizhou [J]. Environmental Chemistry, 2022, 41(9): 2833-2841(in Chinese). doi: 10.7524/j.issn.0254-6108.2021050606
[14] ZHAO M L, ZHAO J, YUAN J, et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth [J]. Plant, Cell & Environment, 2021, 44(2): 613-628. [15] STRICKLAND M S, MCCULLEY R L, NELSON J A, et al. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities [J]. Frontiers in Microbiology, 2015, 6: 817. [16] MIAO Y X, LV J T, HUANG H L, et al. Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry [J]. Journal of Environmental Sciences, 2020, 98: 22-30. doi: 10.1016/j.jes.2020.05.011 [17] DENG S P, TABATABAI M A. Colorimetric determination of reducing sugars in soils [J]. Soil Biology and Biochemistry, 1994, 26(4): 473-477. doi: 10.1016/0038-0717(94)90179-1 [18] KORSHIN G V, BENJAMIN M M, SLETTEN R S. Adsorption of natural organic matter (NOM) on iron oxide: Effects on NOM composition and formation of organo-halide compounds during chlorination [J]. Water Research, 1997, 31(7): 1643-1650. doi: 10.1016/S0043-1354(97)00007-9 [19] 谢理, 杨浩, 渠晓霞, 等. 滇池典型陆生和水生植物溶解性有机质组分的光谱分析 [J]. 环境科学研究, 2013, 26(1): 72-79. doi: 10.13198/j.res.2013.01.76.xiel.004 XIE L, YANG H, QU X X, et al. Characterization of water extractable organic matters from the dominant plants in lake Dianchi by multiple spectroscopic techniques [J]. Research of Environmental Sciences, 2013, 26(1): 72-79(in Chinese). doi: 10.13198/j.res.2013.01.76.xiel.004
[20] 吴东明, 邓晓, 李怡, 等. 土壤溶解性有机质的提取与特性分析研究进展 [J]. 江苏农业科学, 2019, 47(3): 6-11. WU D M, DENG X LI Y, et al. Research progress for extraction and characterization of dissolved organic matter in soil [J]. Jiangsu Agricultural Sciences, 2019, 47(3): 6-11(in Chinese).
[21] WANG C K, ZHANG X J, WANG J, et al. Characterization of dissolved organic matter as N-nitrosamine precursors based on hydrophobicity, molecular weight and fluorescence [J]. Journal of Environmental Sciences, 2013, 25(1): 85-95. doi: 10.1016/S1001-0742(12)60029-1 [22] MINOR E C, SWENSON M M, MATTSON B M, et al. Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis [J]. Environmental Science:Processes & Impacts, 2014, 16(9): 2064-2079. [23] 何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展 [J]. 环境科学学报, 2016, 36(2): 359-372. HE W, BAI Z L, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372(in Chinese).
[24] RUGOVA A, PUSCHENREITER M, KOELLENSPERGER G, et al. Elucidating rhizosphere processes by mass spectrometry - A review [J]. Analytica Chimica Acta, 2017, 956: 1-13. doi: 10.1016/j.aca.2016.12.044 [25] EILERS E J, PAULS G, RILLIG M C, et al. Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots [J]. Journal of Chemical Ecology, 2015, 41(3): 253-266. doi: 10.1007/s10886-015-0559-9 [26] NEUMANN G, BOTT S, OHLER M A, et al. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils [J]. Frontiers in Microbiology, 2014, 5: 2. [27] DERRIEN D, MAROL C, BALESDENT J. The dynamics of neutral sugars in the rhizosphere of wheat. An approach by 13C pulse-labelling and GC/C/IRMS [J]. Plant and Soil, 2004, 267(1/2): 243-253. [28] BERNÁRDEZ M M, de la MONTAÑA MIGUÉLEZ J, QUEIJEIRO J G. HPLC determination of sugars in varieties of chestnut fruits from Galicia (Spain) [J]. Journal of Food Composition and Analysis, 2004, 17(1): 63-67. doi: 10.1016/S0889-1575(03)00093-0 [29] FAN T W, LANE A N, SHENKER M, et al. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS [J]. Phytochemistry, 2001, 57(2): 209-221. doi: 10.1016/S0031-9422(01)00007-3 [30] READ D B, BENGOUGH A G, GREGORY P J, et al. Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil [J]. New Phytologist, 2003, 157(2): 315-326. doi: 10.1046/j.1469-8137.2003.00665.x [31] LU Y F, ZHOU Y R, NAKAI S, et al. Stimulation of nitrogen removal in the rhizosphere of aquatic duckweed by root exudate components [J]. Planta, 2014, 239(3): 591-603. doi: 10.1007/s00425-013-1998-6 [32] SUZUKI K, OKAZAKI K, TAWARAYA K, et al. Gas chromatography-mass spectrometry associated global analysis of rice root exudates under aseptical conditions [J]. Soil Science and Plant Nutrition, 2009, 55(4): 505-513. doi: 10.1111/j.1747-0765.2009.00390.x [33] LIN C, OWEN S M, PEÑUELAS J. Volatile organic compounds in the roots and rhizosphere of Pinus spp [J]. Soil Biology and Biochemistry, 2007, 39(4): 951-960. doi: 10.1016/j.soilbio.2006.11.007 [34] FISCHER K. Environmental analysis of aliphatic carboxylic acids by ion-exclusion chromatography [J]. Analytica Chimica Acta, 2002, 465(1/2): 157-173. [35] ROSENBERG E. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis [J]. Journal of Chromatography A, 2003, 1000(1/2): 841-889. [36] DELL'MOUR M, JAITZ L, OBURGER E, et al. Hydrophilic interaction LC combined with electrospray MS for highly sensitive analysis of underivatized amino acids in rhizosphere research [J]. Journal of Separation Science, 2010, 33(6/7): 911-922. [37] TSEDNEE M, MAK Y W, CHEN Y R, et al. A sensitive LC-ESI-Q-TOF-MS method reveals novel phytosiderophores and phytosiderophore-iron complexes in barley [J]. New Phytologist, 2012, 195(4): 951-961. doi: 10.1111/j.1469-8137.2012.04206.x [38] CHEN Z L, KIM K R, OWENS G, et al. Determination of carboxylic acids from plant root exudates by ion exclusion chromatography with ESI-MS [J]. Chromatographia, 2008, 67(1/2): 113-117. [39] SINGH M, AWASTHI A, SONI S K, et al. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth [J]. Scientific Reports, 2015, 5: 15500. doi: 10.1038/srep15500 [40] PROSSER J I. Molecular and functional diversity in soil micro-organisms [J]. Plant and Soil, 2002, 244(1-2): 9-17. [41] HOULDEN A, TIMMS-WILSON T M, DAY M J, et al. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops [J]. FEMS Microbiology Ecology, 2008, 65(2): 193-201. doi: 10.1111/j.1574-6941.2008.00535.x [42] GRAYSTON S J, WANG S, CAMPBELL C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biology and Biochemistry, 1998, 30(3): 369-378. doi: 10.1016/S0038-0717(97)00124-7 [43] SHANG Q H, YANG G, WANG Y, et al. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field [J]. World Journal of Microbiology & Biotechnology, 2016, 32(6): 95. [44] QIU Q F, NOLL M, ABRAHAM W R, et al. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ [J]. The ISME Journal, 2008, 2(6): 602-614. doi: 10.1038/ismej.2008.34 [45] SHRESTHA M, ABRAHAM W R, SHRESTHA P M, et al. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids [J]. Environmental Microbiology, 2008, 10(2): 400-412. doi: 10.1111/j.1462-2920.2007.01462.x [46] SZYMAŃSKA S, PŁOCINICZAK T, PIOTROWSKA-SEGET Z, et al. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L [J]. Microbiological Research, 2016, 182: 68-79. doi: 10.1016/j.micres.2015.09.007 [47] MYERS R M, FISCHER S G, LERMAN L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985, 13(9): 3131-3145. doi: 10.1093/nar/13.9.3131 [48] MUYZER G, de WAAL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59(3): 695-700. doi: 10.1128/aem.59.3.695-700.1993 [49] KONG H G, KIM N H, LEE S Y, et al. Impact of a recombinant biocontrol bacterium, Pseudomonas fluorescens pc78, on microbial community in tomato rhizosphere [J]. The Plant Pathology Journal, 2016, 32(2): 136-144. doi: 10.5423/PPJ.OA.08.2015.0172 [50] JUMPPONEN A. Soil fungal communities underneath willow canopies on a primary successional glacier forefront: RDNA sequence results can be affected by primer selection and chimeric data [J]. Microbial Ecology, 2007, 53(2): 233-246. doi: 10.1007/s00248-004-0006-x [51] HESS N J, PAŠA-TOLIĆ L, BAILEY V L, et al. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques [J]. Rhizosphere, 2017, 3: 209-211. doi: 10.1016/j.rhisph.2017.04.007 [52] LI K F, PIDATALA V R, SHAIK R, et al. Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake [J]. Environmental Science & Technology, 2014, 48(2): 1184-1193. [53] SALVIOLI A, BONFANTE P. Systems biology and “omics” tools: A cooperation for next-generation mycorrhizal studies [J]. Plant Science, 2013, 203/204: 107-114. doi: 10.1016/j.plantsci.2013.01.001 [54] HAO D C, XIAO P G. Rhizosphere microbiota and microbiome of medicinal plants: From molecular biology to omics approaches [J]. Chinese Herbal Medicines, 2017, 9(3): 199-217. doi: 10.1016/S1674-6384(17)60097-2 [55] 吕丽丽. 根际生物化学特性关联及其对土壤TBECH和TBCO降解的影响 [D]. 北京: 中国科学院大学, 2021. LV L L. Coupling of chemical and biological properties in rhizosphere and their effects on the degradation of TBECH and TBCO in soils[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese).
[56] LUO Q, WANG S Y, SUN L N, et al. Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS [J]. Scientific Reports, 2017, 7: 39878. doi: 10.1038/srep39878 [57] WALKER T S, BAIS H P, HALLIGAN K M, et al. Metabolic profiling of root exudates of Arabidopsis thaliana [J]. Journal of Agricultural and Food Chemistry, 2003, 51(9): 2548-2554. doi: 10.1021/jf021166h [58] DAM N M V, BOUWMEESTER H J. Metabolomics in the rhizosphere: Tapping into belowground chemical communication [J]. Trends in Plant Science, 2016, 21(3): 256-265. doi: 10.1016/j.tplants.2016.01.008 [59] SARDANS J, PEÑUELAS J, RIVAS-UBACH A. Ecological metabolomics: Overview of current developments and future challenges [J]. Chemoecology, 2011, 21(4): 191-225. doi: 10.1007/s00049-011-0083-5 [60] DUNN W B, ELLIS D I. Metabolomics: Current analytical platforms and methodologies [J]. TrAC Trends in Analytical Chemistry, 2005, 24(4): 285-294. doi: 10.1016/j.trac.2004.11.021 [61] RIVAS-UBACH A, SARDANS J, PÉREZ-TRUJILLO M, et al. Strong relationship between elemental stoichiometry and metabolome in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11): 4181-4186. doi: 10.1073/pnas.1116092109 [62] BHALLA R, NARASIMHAN K, SWARUP S. Metabolomics and its role in understanding cellular responses in plants [J]. Plant Cell Reports, 2005, 24(10): 562-571. doi: 10.1007/s00299-005-0054-9 [63] ALIFERIS K A, JABAJI S. Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates [J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7604-7615. doi: 10.1021/jf101029a [64] PARK S Y, LIM S H, HA S H, et al. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. Botrytis) [J]. Journal of Agricultural and Food Chemistry, 2013, 61(28): 6999-7007. doi: 10.1021/jf401330e [65] ZHAO L J, HUANG Y X, HU J, et al. 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress [J]. Environmental Science & Technology, 2016, 50(4): 2000-2010. [66] BOWSHER A W, ALI R, HARDING S A, et al. Evolutionary divergences in root exudate composition among ecologically-contrasting Helianthus species [J]. PLoS One, 2016, 11(1): e0148280. doi: 10.1371/journal.pone.0148280 [67] MÖNCHGESANG S, STREHMEL N, SCHMIDT S, et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data [J]. Scientific Reports, 2016, 6: 29033. doi: 10.1038/srep29033 [68] STREHMEL N, BÖTTCHER C, SCHMIDT S, et al. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana [J]. Phytochemistry, 2014, 108: 35-46. doi: 10.1016/j.phytochem.2014.10.003 [69] MARTI G, ERB M, BOCCARD J, et al. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots [J]. Plant, Cell & Environment, 2013, 36(3): 621-639. [70] CARVALHAIS L C, DENNIS P G, FEDOSEYENKO D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency [J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1): 3-11. doi: 10.1002/jpln.201000085 [71] TIAN L Y, SHEN J P, SUN G X, et al. Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L. ) rhizosphere grown in contaminated mine soil [J]. Environmental Science & Technology, 2020, 54(20): 13137-13146. [72] ZHI Y, ZHOU Q X, LENG X, et al. Mechanism of remediation of cadmium-contaminated soil with low-energy plant snapdragon [J]. Frontiers in Chemistry, 2020, 8: 222. doi: 10.3389/fchem.2020.00222 [73] HU X G, ZHOU Q X. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation [J]. Scientific Reports, 2014, 4: 3782. doi: 10.1038/srep03782 [74] ZHAO L J, ZHANG H L, WHITE J C, et al. Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways [J]. Environmental Science:Nano, 2019, 6(6): 1716-1727. doi: 10.1039/C9EN00137A [75] ZHANG H L, DU W C, PERALTA-VIDEA J R, et al. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress [J]. Environmental Science & Technology, 2018, 52(14): 8016-8026. [76] LV J T, ZHANG S Z, WANG S S, et al. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides [J]. Environmental Science & Technology, 2016, 50(5): 2328-2336. [77] AHARONI A, RIC de VOS C H, VERHOEVEN H A, et al. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry [J]. Omics:A Journal of Integrative Biology, 2002, 6(3): 217-234. doi: 10.1089/15362310260256882 [78] KAPLAN D I, XU C, HUANG S, et al. Unique organic matter and microbial properties in the rhizosphere of a wetland soil [J]. Environmental Science & Technology, 2016, 50(8): 4169-4177. [79] 宋爱华, 李文, 韩飞. 傅立叶变换离子回旋共振质谱法在药学领域的应用进展 [J]. 沈阳药科大学学报, 2017, 34(4): 350-356. doi: 10.14066/j.cnki.cn21-1349/r.2017.04.014 SONG A H, LI W, HAN F. Application progress of Fourier transform ion cyclotron resonance mass spectrometer(FT-ICR MS) in the field of pharmaceutical research [J]. Journal of Shenyang Pharmaceutical University, 2017, 34(4): 350-356(in Chinese). doi: 10.14066/j.cnki.cn21-1349/r.2017.04.014
[80] LOHSE M, BLASER S R G A, VETTERLEIN D, et al. Online nano solid phase extraction Fourier-transform ion cyclotron resonance mass spectrometry workflow to analyze small scale gradients of soil solution organic matter in the rhizosphere [J]. Analytical Chemistry, 2020, 92(15): 10442-10449. doi: 10.1021/acs.analchem.0c00946 [81] DWIVEDI P, WU P Y, KLOPSCH S J, et al. Metabolic profiling by ion mobility mass spectrometry (IMMS) [J]. Metabolomics, 2008, 4(1): 63-80. doi: 10.1007/s11306-007-0093-z [82] ASTARITA G, PAGLIA G. Ion-mobility mass spectrometry in metabolomics and lipidomics[J]. LCGC North Am. 2015, 32 (9): 702-709. [83] PANDEY A, MANN M. Proteomics to study genes and genomes [J]. Nature, 2000, 405(6788): 837-846. doi: 10.1038/35015709 [84] BHARGAVA P, KHAN M, VERMA A, et al. Plant Microbe Interface[M]. Cham: Springer International Publishing, 2019: 271-289. [85] REHMAN A, IJAZ M, MAZHAR K, et al. Microbiome in plant health and disease//KUMAR V. (Ed. ), Microbiome in plant health and disease[M]. Singapore: Springer Nature, 2019: 507-534. [86] BELL T H, JOLY S, PITRE F E, et al. Increasing phytoremediation efficiency and reliability using novel omics approaches [J]. Trends in Biotechnology, 2014, 32(5): 271-280. doi: 10.1016/j.tibtech.2014.02.008 [87] BULGARELLI D, ROTT M, SCHLAEPPI K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J]. Nature, 2012, 488(7409): 91-95. doi: 10.1038/nature11336 [88] LUNDBERG D S, LEBEIS S L, PAREDES S H, et al. Defining the core Arabidopsis thaliana root microbiome [J]. Nature, 2012, 488(7409): 86-90. doi: 10.1038/nature11237 [89] MENDES L W, KURAMAE E E, NAVARRETE A A, et al. Taxonomical and functional microbial community selection in soybean rhizosphere [J]. The ISME Journal, 2014, 8(8): 1577-1587. doi: 10.1038/ismej.2014.17 [90] TURNER T R, RAMAKRISHNAN K, WALSHAW J, et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants [J]. The ISME Journal, 2013, 7(12): 2248-2258. doi: 10.1038/ismej.2013.119 [91] NEWMAN M M, LORENZ N, HOILETT N, et al. Changes in rhizosphere bacterial gene expression following glyphosate treatment [J]. Science of the Total Environment, 2016, 553: 32-41. doi: 10.1016/j.scitotenv.2016.02.078 [92] EL AMRANI A, DUMAS A S, WICK L Y, et al. “omics” insights into PAH degradation toward improved green remediation biotechnologies [J]. Environmental Science & Technology, 2015, 49(19): 11281-11291. [93] ALZUBAIDY H, ESSACK M, MALAS T B, et al. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the red sea [J]. Gene, 2016, 576(2): 626-636. doi: 10.1016/j.gene.2015.10.032 [94] BHATTACHARYYA P, ROY K S, DAS M, et al. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach [J]. Science of the Total Environment, 2016, 542: 886-898. doi: 10.1016/j.scitotenv.2015.10.154 [95] PASCUAL J, BLANCO S, GARCÍA-LÓPEZ M, et al. Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches [J]. PLoS One, 2016, 11(1): e0146558. doi: 10.1371/journal.pone.0146558 [96] DUBEY R K, TRIPATHI V, PRABHA R, et al. Metatranscriptomics and metaproteomics for microbial communities profiling//Unravelling the Soil Microbiome. Springer Briefs in Environmental Science[M]. Springer, 2020: 51-60. [97] de MENEZES A, CLIPSON N, DOYLE E. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil [J]. Environmental Microbiology, 2012, 14(9): 2577-2588. doi: 10.1111/j.1462-2920.2012.02781.x [98] YERGEAU E, TREMBLAY J, JOLY S, et al. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome [J]. The ISME Journal, 2018, 12(3): 869-884. doi: 10.1038/s41396-017-0018-4 [99] PAGÉ A P, YERGEAU É, GREER C W. Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons [J]. PLoS One, 2015, 10(7): e0132062. doi: 10.1371/journal.pone.0132062 [100] HELBLING D E, ACKERMANN M, FENNER K, et al. The activity level of a microbial community function can be predicted from its metatranscriptome [J]. The ISME Journal, 2012, 6(4): 902-904. doi: 10.1038/ismej.2011.158 [101] ABRAM F, GUNNIGLE E, O'FLAHERTY V. Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms [J]. Electrophoresis, 2009, 30(23): 4149-4151. doi: 10.1002/elps.200900474 [102] WILMES P, BOND P L. The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms [J]. Environmental Microbiology, 2004, 6(9): 911-920. doi: 10.1111/j.1462-2920.2004.00687.x [103] TAYLOR E B, WILLIAMS M A. Microbial protein in soil: Influence of extraction method and C amendment on extraction and recovery [J]. Microbial Ecology, 2010, 59(2): 390-399. doi: 10.1007/s00248-009-9593-x [104] WANG H B, ZHANG Z X, LI H, et al. Characterization of metaproteomics in crop rhizospheric soil [J]. Journal of Proteome Research, 2010, 10(3): 932-940. [105] WU L K, WANG H B, ZHANG Z X, et al. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil [J]. PLoS One, 2011, 6(5): e20611. doi: 10.1371/journal.pone.0020611 [106] HULTMAN J, WALDROP M P, MACKELPRANG R, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes [J]. Nature, 2015, 521(7551): 208-212. doi: 10.1038/nature14238 [107] WILMES P, HEINTZ-BUSCHART A, BOND P L. A decade of metaproteomics: Where we stand and what the future holds [J]. Proteomics, 2015, 15(20): 3409-3417. doi: 10.1002/pmic.201500183 [108] SCHNEIDER T, KEIBLINGER K M, SCHMID E, et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions [J]. ISME Journal, 2012, 6(9): 1749-1762. doi: 10.1038/ismej.2012.11 [109] BAO Z H, OKUBO T, KUBOTA K, et al. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants [J]. Applied and Environmental Microbiology, 2014, 80(16): 5043-5052. doi: 10.1128/AEM.00969-14 [110] KNIEF C, DELMOTTE N, CHAFFRON S, et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice [J]. The ISME Journal, 2012, 6(7): 1378-1390. doi: 10.1038/ismej.2011.192 [111] ZAMPIERI E, CHIAPELLO M, DAGHINO S, et al. Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles [J]. Scientific Reports, 2016, 6: 25773. doi: 10.1038/srep25773 [112] CHOUREY K, JANSSON J, VERBERKMOES N, et al. Direct cellular Lysis/protein extraction protocol for soil metaproteomics [J]. Journal of Proteome Research, 2010, 9(12): 6615-6622. doi: 10.1021/pr100787q [113] NAKAYASU E S, NICORA C D, SIMS A C, et al. MPLEx: a robust and universal protocol for single-sample integrative proteomic, metabolomic, and lipidomic analyses [J]. mSystems, 2016, 1(3): e00043-e00016. [114] ELSCHENBROICH S, IGNATCHENKO V, SHARMA P, et al. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: Application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells [J]. Journal of Proteome Research, 2009, 8(10): 4860-4869. doi: 10.1021/pr900318k [115] YANG F, SHEN Y F, CAMP D G, et al. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis [J]. Expert Review of Proteomics, 2012, 9(2): 129-134. doi: 10.1586/epr.12.15 [116] WIESE S, REIDEGELD K A, MEYER H E, et al. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research [J]. Proteomics, 2007, 7(3): 340-350. doi: 10.1002/pmic.200600422 [117] THOMPSON A, SCHÄFER J, KUHN K, et al. Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS [J]. Analytical Chemistry, 2003, 75(8): 1895-1904. doi: 10.1021/ac0262560 [118] JEHMLICH N, SCHMIDT F, TAUBERT M, et al. Protein-based stable isotope probing [J]. Nature Protocols, 2010, 5(12): 1957-1966. doi: 10.1038/nprot.2010.166 [119] MOON S, CHANDRAN A K N, GHO Y S, et al. Integrated omics analysis of root-preferred genes across diverse rice varieties including Japonica and indica cultivars [J]. Journal of Plant Physiology, 2018, 220: 11-23. doi: 10.1016/j.jplph.2017.10.003 [120] ALLEN WHITE R, BORKUM M I, RIVAS-UBACH A, et al. From data to knowledge: The future of multi-omics data analysis for the rhizosphere [J]. Rhizosphere, 2017, 3: 222-229. doi: 10.1016/j.rhisph.2017.05.001 [121] LARSEN P E, SREEDASYAM A, TRIVEDI G, et al. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction [J]. Frontiers in Plant Science, 2016, 6: 1061. [122] BERSANELLI M, MOSCA E, REMONDINI D, et al. Methods for the integration of multi-omics data: Mathematical aspects [J]. BMC Bioinformatics, 2016, 17(Suppl 2): 15. [123] de KEERSMAECKER S C J, THIJS I M V, VANDERLEYDEN J, et al. Integration of omics data: How well does it work for bacteria? [J]. Molecular Microbiology, 2006, 62(5): 1239-1250. doi: 10.1111/j.1365-2958.2006.05453.x [124] HAAS R, ZELEZNIAK A, IACOVACCI J, et al. Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology [J]. Current Opinion in Systems Biology, 2017, 6: 37-45. doi: 10.1016/j.coisb.2017.08.009 [125] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: The microbial ecology of the rhizosphere [J]. Nature Reviews Microbiology, 2013, 11(11): 789-799. doi: 10.1038/nrmicro3109 [126] VANDENBYGAARTA J, ALLENO B. Experiment design to achieve desired statistical power [J]. Canadian Journal of Soil Science, 2011, 91: 309-310. doi: 10.4141/cjss2010-068 [127] ROUDIER P, RITCHIE A, HEDLEY C, et al. The rise of information science: a changing landscape for soil science[R]. IOP Conference Series: Earth and Environmental Science, 2015. [128] GE Y, SHEN C C, WANG Y, et al. Carbonaceous nanomaterials have higher effects on soybean rhizosphere prokaryotic communities during the reproductive growth phase than during vegetative growth [J]. Environmental Science & Technology, 2018, 52(11): 6636-6646.