-
工业上,镉常用于对内层金属的防护[1],比如海洋环境下金属制品的防腐保护和飞机降落架上固件的电镀[2],然而制备镉镀件的电镀液常常含有浓度高达40—50 g·L−1的氯化镉或40—60 g·L−1的硫酸镉[3]. 近年来,太阳能光伏电池发展迅速,CdTe薄膜光伏电池也得以大规模应用,明显扩大了镉的应用规模[4]. 无论是电镀法生产CdTe薄膜还是未来CdTe薄膜电池的回收再利用,都会涉及大量含镉废水的处理,比如CdTe薄膜的电镀液中CdSO4的浓度达0.3 mol·L−1(33.6 g·L−1),废弃CdTe薄膜电池的回收通常采用酸溶解CdTe形成高浓度含镉溶液[5-6]. 这些都无疑会成为工业上含镉废水排放与控制的重大难题. 镉的危害主要体现在容易通过水体富集经食物链进入人体,导致肾损害与软骨病[7]. 近年来,随着世界尤其是我国对环境保护和整治的重视,镉被列为实施排放总量控制的重点监控指标之一,我国《污水综合排放标准》(GB8978—1996)明文规定工业废水中镉的最高允许排放浓度为0.1 mg·L−1.
针对镉废液的处理,工业上已发展了化学沉淀法、铁氧体法、电絮凝法、吸附法和离子交换法等多种方法. 化学沉淀法是工业上最常用的,一般先形成Cd(OH)2、CdS、Cd3(PO4)2等难溶物,再通过凝聚、沉降、浮选、过滤、吸附等过程将沉淀从溶液中分离,镉去除率仅98%左右,并且产生大量固体污泥,易造成二次污染[8-9]. 铁氧体法通过铁氧体与镉共沉淀,去除率达到99%,但该方法需不断通空气氧化,能耗高[10-11]. 吸附法和离子交换法主要适用于处理低浓度镉废液,但存在吸附剂再生和工艺条件确定困难,稳定性差和成本高的问题[12-14]. 近年来,随着技术进步,电化学法逐渐被用于含镉废液处理. 比如,电絮凝法解决了絮状沉淀较分散,难沉降的问题[15-18];电渗析技术通过浓缩减少了废液量,为后续高效处理奠定基础[19], 电渗析、反渗透、纳滤等常规脱盐膜技术的发展同时扩大了膜技术在废水处理领域的应用[20]. 相比而言,将金属离子去除与金属回收相结合,发展直接从废水中提取纯金属的技术更有意义,电解还原法为此提供了可能[21- 22]. 比如,选择特定几何形状和高比表面积的材料[23-24]或者在40 V左右的高电压下[25]通过电化学还原处理低浓度废液,Cd2+去除率达到99%. 考虑到电解还原速率与溶液中金属离子浓度相关,低浓度下受Cd2+扩散控制,电解法将更适合处理高浓度含镉废液. 然而,在高浓度下,随着阳极析氧和阴极析出金属镉,溶液pH会不断下降,不但会增加后期电解还原时的析氢电流,还会酸性腐蚀析出的金属镉,继续降低残留镉浓度困难很大. 可见,为提高电化学还原法处理镉废液的能力,需要减缓阴极侧溶液pH的下降幅度、提升pH的最低值. 阴离子交换膜(anion exchange membrane, AEM)是一种对阴离子选择性透过而对阳离子有阻挡作用的高分子膜[26]. 在电解还原过程中,引入AEM膜分隔阴极和阳极来阻止阳极生成的H+向阴极扩散,可达到防止阴极溶液pH过度下降的目的. 然而,报道发现[3],采用AEM膜仅可将Cd2+浓度降低到90 mg·L−1,去除率92.9%,远未达到排放标准.
本文通过对比研究AEM膜在电解还原处理高浓度含镉废水中的作用,阐明过程的化学原理,确定制约含镉废水处理效果的问题原因,进而提出优化方案. 研究发现,通过控制电解还原电流和阴极溶液pH值来维持Cd2+的还原活性和减少析氢量,可以将Cd2+残留浓度从优化前的200 mg·L−1降低到1.06 mg·L−1,去除率达到99.99%. 本研究为未来继续提升电解还原含镉废水的处理效果并最终达到排放指标明确了研究方向.
阴离子交换膜辅助电解还原法处理含镉废水:原理及优化
Anion exchange membrane-assisting electrochemical reduction treatment on Cd-containing wastewater: Principle and optimization
-
摘要: 本文研究了阴离子交换膜(AEM)辅助电解还原法处理含镉废水.通过对比电解还原过程中是否采用AEM膜对溶液pH、电解电压、除镉率和能耗变化的影响,阐明电解还原法除镉的化学原理,找出限制除镉效率的原因,提出了优化方案.研究发现,H+的扩散是除镉效率的主要限制因素,研究中进一步采用阴离子交换膜,利用其对离子的选择透过性,限制了阳极室生成的H+向阴极室的扩散,抑制了含镉废液pH的下降,减弱了析氢效应及对电解生成金属镉的酸腐蚀,明显提高了电解还原除镉的效率.废液中Cd2+浓度从33.6 g·L−1降低到1.06 mg·L−1,镉去除率达99.99%,电荷效率98%,消耗电能为270 Wh·L−1.Abstract: This article studies the treatment on cadmium-containing wastewater by anion exchange membrane (AEM)-assisting electrolytic reduction. By comparing the influence of AEM membrane on the changing trends of the solution pH, voltage, cadmium removal rate and energy consumption during the electrolysis, the chemical principle for the electrolysis was revealed,the reasons of limiting cadmium removal efficiency were found, the electrolysis reduction process was optimized. The research found that the diffusion of H+ is the main limiting factor for the cadmium removal efficiency. In the research, the anion exchange membrane was further used, by utilizing its selective permeability to ions to limit the diffusion of H+ generated in the anode compartment to the cathode compartment. The reduction of pH of cadmium waste liquid was inhibited, the hydrogen evolution reaction and acid etching of the electrolytic metal cadmium were weakened, significantly improve the efficiency of electrolytic reduction to remove cadmium. The residual Cd2+ concentration after treatment is reduced from 200 mg·L−1 to 1.06 mg·L−1, the cadmium removal rate reaches to 99.99%, the charge efficiency 98%, and the power consumption is 270 Wh·L−1.
-
-
[1] 刘强, 林乃明, 沙春鹏, 等. 钢铁材料电镀镉的研究现状 [J]. 表面技术, 2017, 46(1): 146-157. LIU Q, LIN N M, SHA C P, et al. Recent developments in cadmium electroplating of iron and steel materials [J]. Surface Technology, 2017, 46(1): 146-157(in Chinese).
[2] 贺亚勇, 肖细军, 翟甲友. 基于DOE的军用飞机电镀镉钛工艺稳健性研究 [J]. 新技术新工艺, 2020(5): 64-69. HE Y Y, XIAO X J, ZHAI J Y. Research on process stability of cadmium and titanium electroplating for military aircraft based on DOE [J]. New Technology & New Process, 2020(5): 64-69(in Chinese).
[3] TURAEV D Y, KOLESNIKOV V A, POPOV N A. Technology for the purification of electroplating washwater from cadmium ions by membrane and membraneless electrolysis [J]. Theoretical Foundations of Chemical Engineering, 2020, 54(1): 200-207. doi: 10.1134/S0040579520010224 [4] MASSIOT I, CATTONI A, COLLIN S. Progress and prospects for ultrathin solar cells [J]. Nature Energy, 2020, 5(12): 959-972. doi: 10.1038/s41560-020-00714-4 [5] PLOTNIKOV V, LIU X, PAUDEL N, et al. Thin-film CdTe cells: Reducing the CdTe [J]. Thin Solid Films, 2011, 519(21): 7134-7137. doi: 10.1016/j.tsf.2010.12.179 [6] FTHENAKIS V M. End-of-life management and recycling of PV modules [J]. Energy Policy, 2000, 28(14): 1051-1058. doi: 10.1016/S0301-4215(00)00091-4 [7] 蒋晓红, 余彬, 仲立新. 镉作业工人健康损害的调查分析 [J]. 职业卫生与应急救援, 2010, 28(1): 37-40. JIANG X H, YU B, ZHONG L X. Investigation and analysis of health damage of workers exposed to cadmium [J]. Occup Health & Emerg Rescue, 2010, 28(1): 37-40(in Chinese).
[8] 李唯艳, 蒋鑫, 任建军, 等. 化学法去除废水中镉的研究进展 [J]. 化工技术与开发, 2021, 50(4): 46-48. doi: 10.3969/j.issn.1671-9905.2021.04.014 LI W Y, JIANG X, REN J J, et al. Research progress in removal of cadmium from wastewater by chemical method [J]. Technology & Development of Chemical Industry, 2021, 50(4): 46-48(in Chinese). doi: 10.3969/j.issn.1671-9905.2021.04.014
[9] 姜述芹, 周保学, 于秀娟, 等. 氢氧化镁处理含镉废水的研究 [J]. 环境化学, 2003, 22(6): 601-604. doi: 10.3321/j.issn:0254-6108.2003.06.016 JIANG S Q, ZHOU B X, YU X J, et al. The treatment of cadmium-contained waste water using Mg(OH)2 [J]. Environmental Chemistry, 2003, 22(6): 601-604(in Chinese). doi: 10.3321/j.issn:0254-6108.2003.06.016
[10] 卢莲英, 邹光中, 叶宋娣. 铁氧体与镉共沉淀的试验研究 [J]. 化学与生物工程, 2004, 21(6): 44-45. doi: 10.3969/j.issn.1672-5425.2004.06.018 LU L Y, ZOU G Z, YE S D. Experiment research on concomitance deposition of cadmium and ferrite [J]. Chemistry & Bioengineering, 2004, 21(6): 44-45(in Chinese). doi: 10.3969/j.issn.1672-5425.2004.06.018
[11] LIU F, ZHOU K G, CHEN Q Z, et al. Comparative study on the synthesis of magnetic ferrite adsorbent for the removal of Cd(Ⅱ) from wastewater [J]. Adsorption Science & Technology, 2018, 36(7/8): 1456-1469. [12] ALGUACIL F J, NAVARRO P. Permeation of cadmium through a supported liquid membrane impregnated with CYANEX 923 [J]. Hydrometallurgy, 2001, 61(2): 137-142. doi: 10.1016/S0304-386X(01)00163-3 [13] 耿振香, 李云. 用淀粉黄原酸盐处理含镉废水的研究 [J]. 应用化工, 2005, 34(9): 545-547. doi: 10.3969/j.issn.1671-3206.2005.09.008 GENG Z X, LI Y. Study on treatment of waste water containing cadmium ions with starch xanthate [J]. Applied Chemical Industry, 2005, 34(9): 545-547(in Chinese). doi: 10.3969/j.issn.1671-3206.2005.09.008
[14] CELEBI H, GOK G, GOK O. Adsorption capability of brewed tea waste in waters containing toxic lead(Ⅱ), cadmium (Ⅱ), nickel (Ⅱ), and zinc(Ⅱ) heavy metal ions [J]. Scientific Reports, 2020, 10: 17570. doi: 10.1038/s41598-020-74553-4 [15] 李爽, 邱春生, 孙力平, 等. 铝板电絮凝法去除重金属离子Cd2+和Ni2+ [J]. 环境工程学报, 2016, 10(6): 2855-2861. doi: 10.12030/j.cjee.201501160 LI S, QIU C S, SUN L P, et al. Removal of Cd2+ and Ni2+ from water by electrocoagulation with aluminum electrode [J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2855-2861(in Chinese). doi: 10.12030/j.cjee.201501160
[16] 刘兴, 周少奇. 铁板电絮凝同时去除氟和镉 [J]. 水处理技术, 2019, 45(5): 15-19,24. LIU X, ZHOU S Q. Simultaneous removal of fluoride and cadmium by electrocoagulation using iron electrode [J]. Technology of Water Treatment, 2019, 45(5): 15-19,24(in Chinese).
[17] KOBYA M, DEMIRBAS E, PARLAK N U, et al. Treatment of cadmium and nickel electroplating rinse water by electrocoagulation [J]. Environmental Technology, 2010, 31(13): 1471-1481. doi: 10.1080/09593331003713693 [18] VASUDEVAN S, LAKSHMI J. Effect of alternating and direct current in an electrocoagulation process on the removal of cadmium from water [J]. Water Science and Technology, 2012, 65(2): 353-360. doi: 10.2166/wst.2012.859 [19] MARDER L, BERNARDES A M, ZOPPAS FERREIRA J. Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system [J]. Separation and Purification Technology, 2004, 37(3): 247-255. doi: 10.1016/j.seppur.2003.10.011 [20] 张艳红, 刘伟京, 尤本胜, 等. 用于电镀废水处理的膜技术研究进展 [J]. 膜科学与技术, 2021, 41(4): 147-153. ZHANG Y H, LIU W J, YOU B S, et al. Research progress of membrane technology in electroplating wastewater treatment [J]. Membrane Science and Technology, 2021, 41(4): 147-153(in Chinese).
[21] DUTRA A J B, ESPINOLA A, BORGES P P. Cadmium removal from diluted aqueous solutions by electrowinning in a flow-by cell [J]. Minerals Engineering, 2000, 13(10/11): 1139-1148. [22] ELSHERIEF A E. Removal of cadmium from simulated wastewaters by electrodeposition on spiral wound steel electrode [J]. Electrochimica Acta, 2003, 48(18): 2667-2673. doi: 10.1016/S0013-4686(03)00314-1 [23] DERMENTZIS K, CHRISTOFORIDIS A, PAPADOPOULOU D, et al. Ion and ionic current sinks for electrodeionization of simulated cadmium plating rinse waters [J]. Environmental Progress & Sustainable Energy, 2011, 30(1): 37-43. [24] SULAYMON A H, SHARIF A O, AL-SHALCHI T K. Removal of cadmium from simulated wastewaters by electrodeposition on stainless steeel tubes bundle electrode [J]. Desalination and Water Treatment, 2011, 29(1/2/3): 218-226. [25] 熊长齐, 刘念惠, 吴燿嶷, 等. 电还原法处理模拟污水中重金属Cd研究 [J]. 广东化工, 2017, 44(16): 176-178. doi: 10.3969/j.issn.1007-1865.2017.16.081 XIONG C Q, LIU N H, WU Y Y, et al. Removal of heavy metal cadmium from synthetic wastewater using electroreduction method [J]. Guangdong Chemical Industry, 2017, 44(16): 176-178(in Chinese). doi: 10.3969/j.issn.1007-1865.2017.16.081
[26] 龚安华, 孙岳玲. 离子交换膜电解分离溶液中硫酸根离子的实验研究 [J]. 化学工程师, 2006, 20(11): 59-61. doi: 10.3969/j.issn.1002-1124.2006.11.024 GONG A H, SUN Y L. Study on electrolyzing sulfate ion in solution by ion exchange membrane [J]. Chemical Engineer, 2006, 20(11): 59-61(in Chinese). doi: 10.3969/j.issn.1002-1124.2006.11.024
[27] HERNÁNDEZ-PAGÁN E A, VARGAS-BARBOSA N M, WANG T, et al. Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells [J]. Energy & Environmental Science, 2012, 5(6): 7582-7589.