-
微塑料,即尺寸小于5 mm的塑料,是近年来备受瞩目的新兴污染物[1]。塑料在生产生活中的广泛使用让微塑料的源头无处不在,它们在地表径流、风力、生物等外界因素影响下进入水中,在水中迁移累积并引发各种环境问题[2]。部分微塑料拥有与水生动物食物类似的外形而容易被误食,导致多方面的毒性效应。被水生动物摄食的微塑料随着食物链逐级迁移累积,最终会对人类健康产生威胁[3]。
中国是世界塑料产量第一的国家,微塑料污染问题更加值得关注[4]。研究者们对中国不同类型水域进行监测,在渤海、黄海、东海等海域,长江、黄河、珠江等河流,洞庭湖、鄱阳湖等湖泊中,均发现了不同程度的微塑料污染[5-10]。中国水环境普遍受到微塑料污染的威胁,但不同区域微塑料的污染水平大相径庭[11]。作为一类人造产物,微塑料污染水平与人类活动密切相关,人口密集的城市区域更容易成为微塑料污染的热点区域[12]。目前中国淡水区域微塑料污染相关数据仍然存在空缺,尤其是对于与人类接触频繁的城市湖泊,相关研究十分不足。截至目前为止,只有武汉、长沙、马鞍山等少数城市湖泊有微塑料污染数据可供参考[13-15]。
洞庭湖区是中国重要的农业生产基地和生态基因库,也是享誉中外的旅游胜地。已有研究表明,洞庭湖区广泛受到微塑料污染的威胁。岳阳市是洞庭湖区的最大城市,其生态环境对周边区域影响重大。本研究选取岳阳市内最大的城市湖泊——岳阳南湖作为研究区域,对其表层水体中的微塑料进行调查分析,这是针对洞庭湖区城市湖泊微塑料污染进行的首次研究。本研究将进一步完善城市湖泊微塑料污染基础数据库,为城市区域微塑料污染的防治提供科学依据。
典型城市湖泊岳阳南湖表层水体中的微塑料污染特征
Microplastics in surface water of a typical urban lake: A case study from Nanhu Lake, Yueyang City
-
摘要: 微塑料是目前环境领域备受瞩目的新兴污染物,其污染监测基础数据仍存在许多空白亟待填补。本研究选择典型城市湖泊岳阳南湖为研究区域,对其表层水体微塑料污染进行研究。本研究在14个遍布南湖各个区域的采样点采集表层水体样品,基于湿式消解和密度分离方法对样品进行处理,并采用体视显微镜和显微红外光谱仪进行鉴定,对该区域45 μm—5 mm范围的微塑料污染水平、分布特征、潜在来源及风险进行探讨。研究结果表明,南湖表层水体微塑料丰度在3050—7100 n·m−3之间,平均值为(4664±1742)n·m−3,其污染水平高于大多数自然湖泊,与武汉、长沙等城市湖泊相当; 南湖表层水体中的微塑料更容易集中于湖泊中央区域,微塑料在南湖表层水体中的分布呈现“中高边低”的特点;南湖中检测到的微塑料以纤维状为主,其化学成分主要为聚乙烯、聚酰胺和聚对苯二甲酸乙二醇脂。由此可知,居民日常生活、旅游业、渔业是南湖微塑料的潜在来源;南湖表层水体微塑料的分布受到水动力条件影响显著;同时,研究区域对于碎片和微球微塑料的管控措施较为有效,而纤维微塑料仍大量赋存于南湖之中,这种情况需要得到重视,微塑料污染防控措施在未来需要进一步完善。Abstract: Microplastic is an emerging pollutant that has attracted wide attention. There still lacks the baseline data of microplastic pollution in many regions, which need to be filled urgently. This paper regarded the typical urban lake-Nanhu Lake in Yueyang City as the research area, and the microplastic pollution level in its surface water was studied. Fourteen sampling sites which were spread across the Nanhu Lake were set to collect surface water samples. Wet digestion oxidation and density separation were choosing as the methods to process water samples. The stereomicroscopy and micro-Fourier Transform infrared spectroscopy (μ-FTIR) were applied in identifying microplastics. The pollution levels, distribution characteristics, potential sources, and ecological risk of microplastics with a size range of 45 μm — 5 mm in Nanhu Lake were explored and discussed. The result showed that: 1) Microplastic concentrations of surface water in Nanhu Lake ranged from 3050 — 7100 n·m−3, with an average value at (4664±1742) n·m−3. The pollution level in Nanhu Lake was higher than most natural lakes, and not much different from the urban lakes in other cities, such as Wuhan and Changsha. 2) Microplastic was easier to gather in the central area of Nanhu Lake. The abundance of microplastics in the middle area was higher than that at the edge of this lake. 3) The most common shapes of microplastics in collected surface water samples from Nanhu Lake were fiber. The major polymer compositions were polyethylene (PE), polyamide (PA), and polyethylene terephthalate (PET). These findings indicated that surroundings residents’ daily life, tourism, and fisheries made a large contribution to the microplastics pollution in Nanhu Lake. And hydrodynamic characteristic is the critical factor for the distribution of microplastics in this lake. At the same time, we could know that the manage measures for debris and microsphere microplastics in this study area were more effective than fiber microplastics. A large number of fiber microplastics still existed in this urban lake. This phenomenon must be taken seriously and the prevention and control measures for microplastics should be further improved.
-
Key words:
- microplastics /
- lake /
- surface water /
- urban
-
表 1 湖泊表层水体中微塑料的分布
Table 1. Occurrence of microplastics in surface water of lakes
地点 Location 国家 Country 采集下限/μm Lower limit 丰度/(n·m−3) Abundance 数据来源 Reference 波尔塞纳湖 意大利 300 0.82—4.42 [24] 秋士湖 意大利 300 2.68—3.36 [24] 巴塔哥尼亚诸湖 阿根廷 38 0.9 [28] 库库柯米克泻湖 土耳其 50 3000—124000 [26] 太湖 中国 47 3400—25800 [29] 北湖 中国 50 8925 [15] 洪湖 中国 50 1250—4650 [9] 滇池 中国 20 800—6000 [30] 跃进湖 中国 45 7050 [25] 鄱阳湖 中国 50 5000—34000 [10] 乌梁素海 中国 75 3120—11250 [31] 南洞庭湖 中国 45 367—1567 [27] 西洞庭湖 中国 45 433—1500 [27] 东洞庭湖 中国 50 900—2800 [9] 南湖 中国 45 3050—7100 本研究 表 2 南湖表层水体中微塑料的化学成分
Table 2. Polymer composition of microplastics in Nanhu Lake
化学成分 Polymer 纤维 Fiber 微球 Pellet 碎片 Fragment 总计 Total 聚乙烯 PE 32 9 11 52 聚酰胺 PA 43 0 0 43 聚对苯二甲酸乙二醇酯 PET 22 0 3 25 聚丙烯 PP 3 0 4 7 聚苯乙烯 PS 0 1 2 3 总计 Total 100 10 20 130 -
[1] KLINGELHÖFER D, BRAUN M, QUARCOO D, et al. Research landscape of a global environmental challenge: Microplastics [J]. Water Research, 2020, 170: 115358. doi: 10.1016/j.watres.2019.115358 [2] 王英雪, 徐熳, 王立新, 等. 微塑料在哺乳动物的暴露途径、毒性效应和毒性机制浅述 [J]. 环境化学, 2021, 40(1): 41-54. doi: 10.7524/j.issn.0254-6108.2020053002 WANG Y X, XU M, WANG L X, et al. The exposure routes, organ damage and related mechanism of the microplastics on the mammal [J]. Environmental Chemistry, 2021, 40(1): 41-54(in Chinese). doi: 10.7524/j.issn.0254-6108.2020053002
[3] 张子琪, 高淑红, 康园园, 等. 中国水环境微塑料污染现状及其潜在生态风险 [J]. 环境科学学报, 2020, 40(10): 3574-3581. doi: 10.13671/j.hjkxxb.2020.0390 ZHANG Z Q, GAO S H, KANG Y Y, et al. Current status of microplastics contamination in China's water environment and its potential ecological risks [J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3574-3581(in Chinese). doi: 10.13671/j.hjkxxb.2020.0390
[4] ZHANG Z Y, ZULPIYA·MAMAT, CHEN Y G. Current research and perspective of microplastics (MPs) in soils (dusts), rivers (lakes), and marine environments in China [J]. Ecotoxicology and Environmental Safety, 2020, 202: 110976. doi: 10.1016/j.ecoenv.2020.110976 [5] ZHONG M Y, TANG J H, GUO X Y, et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai, Yellow and East China seas [J]. Science of the Total Environment, 2020, 741: 140434. doi: 10.1016/j.scitotenv.2020.140434 [6] HE D, CHEN X J, ZHAO W, et al. Microplastics contamination in the surface water of the Yangtze River from upstream to estuary based on different sampling methods [J]. Environmental Research, 2021, 196: 110908. doi: 10.1016/j.envres.2021.110908 [7] HAN M, NIU X R, TANG M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary [J]. Science of the Total Environment, 2020, 707: 135601. doi: 10.1016/j.scitotenv.2019.135601 [8] CHENG Y, MAI L, LU X W, et al. Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations [J]. Environmental Pollution, 2021, 281: 117025. doi: 10.1016/j.envpol.2021.117025 [9] WANG W F, YUAN W K, CHEN Y L, et al. Microplastics in surface waters of dongting lake and Hong lake, China [J]. Science of the Total Environment, 2018, 633: 539-545. doi: 10.1016/j.scitotenv.2018.03.211 [10] YUAN W K, LIU X N, WANG W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China [J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187. doi: 10.1016/j.ecoenv.2018.11.126 [11] 朱莹, 曹淼, 罗景阳, 等. 微塑料的环境影响行为及其在我国的分布状况 [J]. 环境科学研究, 2019, 32(9): 1437-1447. ZHU Y, CAO M, LUO J Y, et al. Distribution and potential risks of microplastics in China: A review [J]. Research of Environmental Sciences, 2019, 32(9): 1437-1447(in Chinese).
[12] 徐舟影, 陈奥飞, 赵胤祺, 等. 武汉城市污水中微塑料的分离、鉴定及其微观特征分析 [J]. 环境科学研究, 2021, 34(3): 637-645. XU Z Y, CHEN A F, ZHAO Y Q, et al. Separation, identification and microscopic characteristics analysis of microplastics in Wuhan municipal sewage [J]. Research of Environmental Sciences, 2021, 34(3): 637-645(in Chinese).
[13] WEN X F, DU C Y, XU P, et al. Microplastic pollution in surface sediments of urban water areas in Changsha, China: Abundance, composition, surface textures [J]. Marine Pollution Bulletin, 2018, 136: 414-423. doi: 10.1016/j.marpolbul.2018.09.043 [14] 王璇, 牛司平, 宋小龙, 等. 城市湖泊沉积物微塑料污染特征 [J]. 环境科学, 2020, 41(7): 3240-3248. WANG X, NIU S P, SONG X L, et al. Characterization of microplastic pollution of sediments from urban lakes [J]. Environmental Science, 2020, 41(7): 3240-3248(in Chinese).
[15] WANG W F, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China [J]. Science of the Total Environment, 2017, 575: 1369-1374. doi: 10.1016/j.scitotenv.2016.09.213 [16] WANG X J, BOLAN N, TSANG D C W, et al. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications [J]. Journal of Hazardous Materials, 2021, 402: 123496. doi: 10.1016/j.jhazmat.2020.123496 [17] WANG C, XING R L, SUN M D, et al. Microplastics profile in a typical urban river in Beijing [J]. Science of the Total Environment, 2020, 743: 140708. doi: 10.1016/j.scitotenv.2020.140708 [18] YIN L S, WEN X F, DU C Y, et al. Comparison of the abundance of microplastics between rural and urban areas: A case study from East Dongting Lake [J]. Chemosphere, 2020, 244: 125486. doi: 10.1016/j.chemosphere.2019.125486 [19] GARDON T, EL RAKWE M, PAUL-PONT I, et al. Microplastics contamination in pearl-farming lagoons of French Polynesia [J]. Journal of Hazardous Materials, 2021, 419: 126396. doi: 10.1016/j.jhazmat.2021.126396 [20] XIONG X, ZHANG K, CHEN X C, et al. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake [J]. Environmental Pollution, 2018, 235: 899-906. doi: 10.1016/j.envpol.2017.12.081 [21] QUESADAS-ROJAS M, ENRIQUEZ C, VALLE-LEVINSON A. Natural and anthropogenic effects on microplastic distribution in a hypersaline lagoon [J]. Science of the Total Environment, 2021, 776: 145803. doi: 10.1016/j.scitotenv.2021.145803 [22] BERMÚDEZ M, VILAS C, QUINTANA R, et al. Unravelling spatio-temporal patterns of suspended microplastic concentration in the Natura 2000 Guadalquivir estuary (SW Spain): Observations and model simulations [J]. Marine Pollution Bulletin, 2021, 170: 112622. doi: 10.1016/j.marpolbul.2021.112622 [23] KUTRALAM-MUNIASAMY G, PÉREZ-GUEVARA F, de MARTÍNEZ I E, et al. Overview of microplastics pollution with heavy metals: Analytical methods, occurrence, transfer risks and call for standardization [J]. Journal of Hazardous Materials, 2021, 415: 125755. doi: 10.1016/j.jhazmat.2021.125755 [24] FISCHER E K, PAGLIALONGA L, CZECH E, et al. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy) [J]. Environmental Pollution, 2016, 213: 648-657. doi: 10.1016/j.envpol.2016.03.012 [25] YIN L S, JIANG C B, WEN X F, et al. Microplastic pollution in surface water of urban lakes in Changsha, China [J]. International Journal of Environmental Research and Public Health, 2019, 16(9): 1650. doi: 10.3390/ijerph16091650 [26] FARUK ÇULLU A, SÖNMEZ V Z, SIVRI N. Microplastic contamination in surface waters of the Küçükçekmece Lagoon, Marmara Sea (Turkey): Sources and areal distribution [J]. Environmental Pollution, 2021, 268: 115801. doi: 10.1016/j.envpol.2020.115801 [27] JIANG C B, YIN L S, WEN X F, et al. Microplastics in sediment and surface water of west dongting lake and south dongting lake: Abundance, source and composition [J]. International Journal of Environmental Research and Public Health, 2018, 15(10): 2164. doi: 10.3390/ijerph15102164 [28] ALFONSO M B, SCORDO F, SEITZ C, et al. First evidence of microplastics in nine lakes across Patagonia (South America) [J]. Science of the Total Environment, 2020, 733: 139385. doi: 10.1016/j.scitotenv.2020.139385 [29] SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu lake, China [J]. Environmental Pollution, 2016, 216: 711-719. doi: 10.1016/j.envpol.2016.06.036 [30] 袁海英, 侯磊, 梁启斌, 等. 滇池近岸水体微塑料污染与富营养化的相关性 [J]. 环境科学, 2021, 42(7): 3166-3175. YUAN H Y, HOU L, LIANG Q B, et al. Correlation between microplastics pollution and eutrophication in the near shore waters of Dianchi lake [J]. Environmental Science, 2021, 42(7): 3166-3175(in Chinese).
[31] MAO R F, HU Y Y, ZHANG S Y, et al. Microplastics in the surface water of Wuliangsuhai Lake, Northern China [J]. Science of the Total Environment, 2020, 723: 137820. doi: 10.1016/j.scitotenv.2020.137820 [32] WANG F, WANG B, DUAN L, et al. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China [J]. Water Research, 2020, 182: 115956. doi: 10.1016/j.watres.2020.115956 [33] ZHOU A G, ZHANG Y, XIE S L, et al. Microplastics and their potential effects on the aquaculture systems: A critical review [J]. Reviews in Aquaculture, 2021, 13(1): 719-733. doi: 10.1111/raq.12496 [34] JÄRLSKOG I, STRÖMVALL A M, MAGNUSSON K, et al. Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction [J]. Science of the Total Environment, 2021, 774: 145503. doi: 10.1016/j.scitotenv.2021.145503 [35] LI H, WANG F H, LI J N, et al. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation [J]. Chemosphere, 2021, 264: 128556. doi: 10.1016/j.chemosphere.2020.128556 [36] LAN T, WANG T, CAO F, et al. A comparative study on the adsorption behavior of pesticides by pristine and aged microplastics from agricultural polyethylene soil films [J]. Ecotoxicology and Environmental Safety, 2021, 209: 111781. doi: 10.1016/j.ecoenv.2020.111781 [37] de FELICE B, AMBROSINI R, BACCHETTA R, et al. Dietary exposure to polyethylene terephthalate microplastics (PET-MPs) induces faster growth but not oxidative stress in the giant snail Achatina reticulata [J]. Chemosphere, 2021, 270: 129430. doi: 10.1016/j.chemosphere.2020.129430 [38] KHOSROVYAN A, KAHRU A. Evaluation of the potential toxicity of UV-weathered virgin polyamide microplastics to non-biting midge Chironomus riparius [J]. Environmental Pollution, 2021, 287: 117334. doi: 10.1016/j.envpol.2021.117334 [39] LITHNER D, LARSSON Å, DAVE G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition [J]. Science of the Total Environment, 2011, 409(18): 3309-3324. doi: 10.1016/j.scitotenv.2011.04.038 [40] SONG K, DING R R, SUN C Y, et al. Microparticles and microplastics released from daily use of plastic feeding and water bottles and plastic injectors: Potential risks to infants and children in China [J]. Environmental Science and Pollution Research, 2021,28: 59813-8. [41] DOWARAH K, DEVIPRIYA S P. Microplastic prevalence in the beaches of Puducherry, India and its correlation with fishing and tourism/recreational activities [J]. Marine Pollution Bulletin, 2019, 148: 123-133. doi: 10.1016/j.marpolbul.2019.07.066 [42] 岳阳市生态环境局南湖新区分局. 南湖新区“十三五”期间和2020年生态环境保护工作总结[EB/OL]. [2020-12-1] http://www.yynanhu.gov.cn/29509/54779/54784/content_1770865.html. [43] SONG Z Y, LIU K, WANG X H, et al. To what extent are we really free from airborne microplastics? [J]. Science of the Total Environment, 2021, 754: 142118. doi: 10.1016/j.scitotenv.2020.142118 [44] ZHAO Y P, QIAO R X, ZHANG S Y, et al. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio) [J]. Journal of Hazardous Materials, 2021, 403: 123663. doi: 10.1016/j.jhazmat.2020.123663 [45] LIU H L, KWAK J I, WANG D Y, et al. Multigenerational effects of polyethylene terephthalate microfibers in Caenorhabditis elegans [J]. Environmental Research, 2021, 193: 110569. doi: 10.1016/j.envres.2020.110569 [46] MATEOS-CÁRDENAS A, O'HALLORAN J, van PELT F N A M, et al. Beyond plastic microbeads-Short-term feeding of cellulose and polyester microfibers to the freshwater amphipod Gammarus duebeni [J]. Science of the Total Environment, 2021, 753: 141859. doi: 10.1016/j.scitotenv.2020.141859 [47] REBELEIN A, INT-VEEN I, KAMMANN U, et al. Microplastic fibers—Underestimated threat to aquatic organisms? [J]. Science of the Total Environment, 2021, 777: 146045. doi: 10.1016/j.scitotenv.2021.146045