-
水环境评价是针对某流域、水库开展系列监测,根据各类评价模型以及水环境质量标准对各项指标开展定量评价,全球每年因水环境污染引发健康问题的人超过80万人[1],因此,确定水环境质量及水质受污染状况,是保障水环境安全、保障居民健康及合理开发水资源的重要举措[2]。常见的水质评价方法主要有单因子评价法,综合污染指数法,主成分分析法,模糊综合评价法,神经网络法和支持向量法等[3-7]。以上各类方法在实际应用中各有优缺,往往单一的一种评价方法并不能准确全面体现水质情况,通常需要多种评价方法的结合,丛铭等[8]采用了单因子评价与模糊综合评价法针对辽河口水质进行评价分析,两种评价方法的结合,使得评价结果更科学合理。朱长军等[9] 采用主成分分析法及WQI污染指数法对大黑汀水库水质进行综合评价,在充分考虑指标权重,得出水库以有机污染为主。董颖等[10]采用主成分分析法及熵值法结合,得出了较为科学的水源地水质,分析得出冬季水质明显优于夏季,锰是尤家峁水库水质恶化的主导因素。Giao 等[11]针对越南湄公河三角洲地区饮用水采用了集对分析法以及水质指数法进行分析评价,结果表明影响该地区水质的主要特征污染物为有机物、NH3-N以及大肠菌群。
祁连山地处青藏高原东北部,分布于甘肃、青海两省,是我国西部地区重要的生态安全屏障与重要的水源产流地,也是我国重点生态功能区和生物多样性保护优先区域[12-14]。区域内分布着大大小小的水库、水电站数十座,不少水库是作为饮用水水源。针对祁连山地区,张玉凤等[15]采用单因子评价法对祁连山区域内双树寺水库进行水质评价,得出当TN不参评时,水库水质可达《地表水环境质量标准》(GB3838—2002)中Ⅰ类水体。蒋丽君等[16]采用单因子评价法对祁连山自然保护区内主要河流进行水质评价,结果显示在TN不参评时,2012至2016年Ⅰ—Ⅲ类水体占比达80%以上,按地表水功能区水质管理目标评价全部达标。
祁连山国家公园水库水质评价的相关研究较少,已有研究也仅仅只是针对某一水库采用单一的方法进行了水质评价,缺乏对祁连山饮用水源水库系统,综合全面的评价研究。为明确祁连山国家公园内饮用水源水质特征及水环境状况,本文选择了国家公园内6座主要流域上,作为饮用水水源的水库,采用了单因子评价法、综合污染指数法、主成分分析法分别对水库2017—2019年水环境质量进行评价,旨在明确祁连山饮用水源水环境质量状况,为祁连山国家公园内饮用水源地保护及水环境治理提供支撑,为祁连山国家公园管理提供帮助。
2017—2019年祁连山国家公园水库水质特征及综合评价
2017—2019 Qilian Mountain typical reservoir water pollution characteristics and water quality evaluation
-
摘要: 本文以祁连山公园内水库为研究对象,选取祁连山6座水库2017—2019年的pH、氨氮(NH3-N)、高锰酸盐指数(CODMn)、总氮(TN)、总磷(TP)、粪大肠菌群数等监测年平均数据作为水质评价指标,分析了不同水库水质污染特征,分别采用单因子评价法、综合污染指数法、主成分分析法对水质进行综合评价。结果表明:各水库pH波动较小,水体整体呈中性偏弱碱性;各水库TN波动较大,浓度较高。单因子评价结果表明在2017年至2019年间,不考虑TN浓度时,水库评价结果基本为Ⅰ类、Ⅱ类与Ⅲ类水体,且Ⅰ类水体占比最高,水库水质评价结果较好。综合污染评价法显示,6座水库中大靖峡水库水质最差,主要污染物为有机物与总氮。主成分分析法得出各水库不同年份水质理化性质存在一定差异,与第一第二主成分高度相关的指标因子是TN与NH3-N,2017年主成分得分最高,水质最差,2018年、2019年主成分得分减小。3种评价结果均显示,自2017至2019年祁连山水库水环境质量好转。通过3种方法定性定量的有机结合,得出祁连山国家公园水质主要限制因子为有机物、氮、磷及微生物指标,探明污染源并进行有效治理可以显著提高祁连山水环境质量,对祁连山国家公园内环境修复具有一定指导意义。Abstract: This paper takes the reservoirs in the Qilian Mountain Park as the research object, and selects the pH, ammonia nitrogen (NH3-N), permanganate index (CODMn), total nitrogen (TN), total phosphorus (TP), The annual average monitoring data such as the number of fecal coliforms are used as water quality evaluation indicators. The water quality pollution characteristics of different reservoirs are analyzed, and the single factor evaluation method, comprehensive pollution index method, and principal component analysis method are used to comprehensively evaluate the water quality. The results showed that the pH fluctuation of each reservoir was small, and the water body was neutral and weakly alkaline as a whole; the TN of each reservoir fluctuated greatly, and the concentration was high. The single-factor evaluation results show that from 2017 to 2019, without considering the TN concentration, the reservoir evaluation results are basically type I, II and III water bodies, and the water bodies of type I account for the highest proportion, and the water quality evaluation results of the reservoir are better. The comprehensive pollution evaluation method shows that the Dajingxia Reservoir has the worst water quality among the 6 reservoirs, and the main pollutants are organic matter and total nitrogen. The principal component analysis method shows that there are certain differences in the physical and chemical properties of the water quality of each reservoir in different years. The index factors that are highly related to the first and second principal components are TN and NH3-N. The principal component score was the highest in 2017 and the water quality was the worst, 2018—2019. The annual principal component score decreases. The three evaluation results all show that the water environment quality of Qilianshan Reservoir has improved from 2017 to 2019. Through the qualitative and quantitative organic combination of the three methods, it is concluded that the main limiting factors for the water quality of Qilian Mountain National Park are organic matter, nitrogen, phosphorus and microbial indicators. The identification of pollution sources and effective treatment can significantly improve the water environmental quality of Qilian Mountain, which has a significant impact on the environment in Qilian Mountain National Park. Repair has certain guiding significance.
-
表 1 祁连山国家公园水库水质污染情况
Table 1. Water pollution in Qilian Mountain National Park Reservoir
时间
Time水库
ReservoirCODMn/
(mg·L−1)NH3-N/
(mg·L−1)TN/
(mg·L−1)TP/
(mg·L−1)粪大肠菌群/(个·L−1)
Fecal coliforms主要污染物
Major pollutant2017年—2019年 D1 1.22—0.98 0.19—0.25 1.33—1.69 0.014—0.01 45—55 TN D2 2.11—1.54 0.23—0.28 1.42—1.88 0.012—0.02 57—61 TN D3 1.93—1.67 0.33—0.23 1.92—2.05 0.02—0.04 668—30 TN D4 2.7—3.15 0.13—0.46 3.05—5.01 0.126—0.06 280—156 TN、TP D5 1.55—1.69 0.06—0.17 2.13—2.29 0.04—0.04 480—50 TN D6 1.11—1.16 0.06—0.09 1.38—1.38 0.023—0.09 120—145 TN、TP 注:表中以各水库污染物浓度与《地表水环境质量标准》(GB3838—2002)中Ⅲ类水体各类污染物限值为依据,超标即为主要污染物。
Note: The identification of the main pollutants in the table is based on the concentration of pollutants in each reservoir and the limits of various pollutants in Class III water bodies in the Environmental Quality Standard for Surface Water (GB3838—2002). Exceeding the standard is the main pollutant.)表 2 祁连山国家公园水库水质单因子评价结果
Table 2. Single-factor evaluation results of water quality of Qilian Mountain National Park Reservoir
水质标准 2017年 2018年 2019年 TN TP TN TP TN TP Ⅰ D1,D2,D3,D4,D6 D1,D3 D1,D2 Ⅱ D5 D2,D5,D6 D3,D4,D5,D6 Ⅲ D4 Ⅳ D6 Ⅴ D1 D1,D5 D1,D2 劣Ⅴ D2,D3,D4,D5,D6 D2,D3, D4,D6 D3,D4,D5 -
[1] SHAH E, LIEBRAND J, VOS J, et al. The UN world water development report 2016, water and jobs: A critical review [J]. Development and Change, 2018, 49(2): 678-691. doi: 10.1111/dech.12395 [2] 宁忠瑞, 李虹彬. 基于水质标识指数的黄河宁夏段水质评价与分析[J]. 灌溉排水学报, 2020, 39(增刊1): 56-61. NING Z R, LI H B. Assessment and analysis of water quality in ningxia section of the Yellow River based on comprehensive water quality identification index[J]. Journal of Irrigation and Drainage, 2020, 39(Sup 1): 56-61(in Chinese).
[3] WU Z S, WANG X L, CHEN Y W, et al. Assessing river water quality using water quality index in Lake Taihu Basin, China [J]. Science of the Total Environment, 2018, 612: 914-922. doi: 10.1016/j.scitotenv.2017.08.293 [4] 毕业亮, 王华彩, 夏兵, 等. 雨源型城市河流水污染特征及水质联合评价: 以深圳龙岗河为例[J]. 环境科学, 2022, 43(2): 782-794 BI Y L, WANG H C, XIA B, et al. Water pollution characteristics and water quality joint evaluation of rivers in rain-source-type cities: Taking Shenzhen Longgang River as an example [J]. Environmental Science, 2022, 43(2): 782-794 (in Chinese).
[5] 高学平, 孙博闻, 訾天亮, 等. 基于时域权重矩阵的模糊综合水质评价法及其应用 [J]. 环境工程学报, 2017, 11(2): 970-976. doi: 10.12030/j.cjee.201510107 GAO X P, SUN B W, ZI T L, et al. Application of improved fuzzy comprehensive water quality assessment based on weight matrix of temporal distribution [J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 970-976(in Chinese). doi: 10.12030/j.cjee.201510107
[6] 王凤艳, 汤玉福. 人工神经网络法在大清河水质评价中的应用 [J]. 东北水利水电, 2019, 37(6): 25-26,35. doi: 10.14124/j.cnki.dbslsd22-1097.2019.06.009 WANG F Y, TANG Y F. Application of artificial neural network method in water quality evaluation for Daqinghe river [J]. Water Resources & Hydropower of Northeast China, 2019, 37(6): 25-26,35(in Chinese). doi: 10.14124/j.cnki.dbslsd22-1097.2019.06.009
[7] 张慧妍, 段瑜, 王小艺, 等. 数据驱动的模糊支持向量农业水质评价模型 [J]. 水土保持通报, 2019, 39(1): 142-146,153. ZHANG H Y, DUAN Y, WANG X Y, et al. Data-driven fuzzy support vector model for agriculture water quality evaluation [J]. Bulletin of Soil and Water Conservation, 2019, 39(1): 142-146,153(in Chinese).
[8] 丛铭, 阳辉, 张晓静, 等. 单因子法与可变模糊法在水质评价中的应用 [J]. 南水北调与水利科技(中英文), 2021, 19(4): 720-728. CONG M, YANG H, ZHANG X J, et al. Application of single factor method and variable fuzzy method in water quality evaluation [J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(4): 720-728(in Chinese).
[9] 朱长军, 赵方星, 李步东, 等. 基于主成分分析及WQImin的大黑汀水库水质评价 [J]. 河南师范大学学报(自然科学版), 2021, 49(3): 52-58,124. ZHU C J, ZHAO F X, LI B D, et al. Water quality evaluation of Daheiting reservoir based on principal component analysis and WQImin [J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(3): 52-58,124(in Chinese).
[10] 董颖, 吴喜军, 李怀恩, 等. 2013—2019年陕北矿区饮用水源地水质特征及驱动因素 [J]. 水土保持通报, 2021, 41(1): 284-289. DONG Y, WU X J, Li H E, et al. Water quality characteristics and driving factors of drinking water source in northern Shaanxi mining area during 2013-2019 [J]. Bulletin of Soil and Water Conservation, 2021, 41(1): 284-289(in Chinese).
[11] GIAO N T, NHIEN H T H, ANH P K, et al. Classification of water quality in low-lying area in Vietnamese Mekong delta using set pair analysis method and Vietnamese water quality index [J]. Environmental Monitoring and Assessment, 2021, 193(6): 1-16. [12] 张华, 韩武宏, 宋金岳, 等. 祁连山国家公园生境质量时空演变 [J]. 生态学杂志, 2021, 40(5): 1419-1430. ZHANG H, HAN W H, SONG J Y, et al. Spatial-temporal variations of habitat quality in Qilian Mountain National Park [J]. Chinese Journal of Ecology, 2021, 40(5): 1419-1430(in Chinese).
[13] 金崑. 祁连山国家公园体制试点经验 [J]. 生物多样性, 2021, 29(3): 298-300. doi: 10.17520/biods.2021046 JIN K. On the experiences of Qilian Mountain National Park system pilot [J]. Biodiversity Science, 2021, 29(3): 298-300(in Chinese). doi: 10.17520/biods.2021046
[14] 肖生春, 肖洪浪. 黑河流域水环境演变及其驱动机制研究进展 [J]. 地球科学进展, 2008, 23(7): 748-755. doi: 10.3321/j.issn:1001-8166.2008.07.014 XIAO S C, XIAO H L. Advances in the study of the water regime process and driving mechanism in the Heihe river basin [J]. Advances in Earth Science, 2008, 23(7): 748-755(in Chinese). doi: 10.3321/j.issn:1001-8166.2008.07.014
[15] 张玉凤. 基于单因子评价的双树寺水库水环境分析 [J]. 甘肃科技, 2017, 33(2): 20-21,41. doi: 10.3969/j.issn.1000-0952.2017.02.009 ZHANG Y F. Analysis of water environment of Shuangshusi Reservoir based on single factor evaluation [J]. Gansu Science and Technology, 2017, 33(2): 20-21,41(in Chinese). doi: 10.3969/j.issn.1000-0952.2017.02.009
[16] 蒋丽君. 甘肃祁连山自然保护区地表水质量现况评价 [J]. 甘肃水利水电技术, 2017, 53(8): 12-15,19. doi: 10.3969/j.issn.2095-0144.2017.08.004 JIANG L J. Evaluation of surface water quality in qilian mountain nature reserve in gansu province [J]. Gansu Water Resources and Hydropower Technology, 2017, 53(8): 12-15,19(in Chinese). doi: 10.3969/j.issn.2095-0144.2017.08.004
[17] 国家环境保护总局. 水和废水监测分析方法-第4版 [M]. 中国环境科学出版社, 2002. State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Method-4th Edition [M]. China Environmental Science Press, 2002(in Chinese).
[18] 宁阳明, 尹发能, 李香波. 几种水质评价方法在长江干流中的应用 [J]. 西南大学学报(自然科学版), 2020, 42(12): 126-133. doi: 10.13718/j.cnki.xdzk.2020.12.016 NING Y M, YIN F N, LI X B. Application of several evaluation methods for river water quality in the Yangtze River mainstream [J]. Journal of Southwest University (Natural Science Edition), 2020, 42(12): 126-133(in Chinese). doi: 10.13718/j.cnki.xdzk.2020.12.016
[19] 彭小玉, 周理程, 吴文晖, 等. 水污染指数法在湘江长沙段支流水质评价中的应用分析 [J]. 四川环境, 2021, 40(2): 172-177. PENG X Y, ZHOU L C, WU W H, et al. Application analysis of water pollution index method in water quality evaluation for the tributary of Xiangjiang river in Changsha city [J]. Sichuan Environment, 2021, 40(2): 172-177(in Chinese).
[20] 赵腊梅, 齐朔风. CCME WQI在汾河水库及上游河段水质评价中的应用 [J]. 中国农村水利水电, 2021(2): 58-61. ZHAO L M, QI S F. Application of CCME WQI in water quality assessment of Fenhe reservoir and upstream reach in China [J]. China Rural Water and Hydropower, 2021(2): 58-61(in Chinese).
[21] 徐媛, 赵吉睿, 马楠, 等. 基于多元统计分析的独流减河水质时空特征 [J]. 安全与环境学报, 2021, 21(3): 1342-1351. XU Y, ZHAO J R, MA N, et al. Assessment of spatio-temporal features of water quality via multivariate statistical analysis of Duliujian River basin [J]. Journal of Safety and Environment, 2021, 21(3): 1342-1351(in Chinese).
[22] 邢洁, 宋男哲, 陈祥伟, 等. 基于主成分分析的松花江流域黑龙江段水质评价 [J]. 中国给水排水, 2021, 37(1): 89-94. XING J, SONG N Z, CHEN X W, et al. Water quality assessment of Heilongjiang control section in Songhua river basin based on principal component analysis [J]. China Water & Wastewater, 2021, 37(1): 89-94(in Chinese).
[23] 戴婉晴, 叶春, 李春华, 等. 大通湖湖区水质时空分布特征及其影响因子解析[J]. 环境工程, 2022, 40(2): 34-41 DAI W Q, YE C, LI C H, et al. Analysis of the temporal and spatial distribution characteristics of water quality and its influencing factors in Datong Lake area [J]. Environmental Engineering: 2022, 40(2): 34-41 (in Chinese).
[24] 王菊琴. 浅谈古浪县大靖峡水库饮用水水源地防护 [J]. 农业科技与信息, 2020(16): 38-39. doi: 10.3969/j.issn.1003-6997.2020.16.016 WANG J Q. Discussion on the protection of drinking water source of Dajingxia Reservoir in Gulang County [J]. Agricultural Science-Technology and Information, 2020(16): 38-39(in Chinese). doi: 10.3969/j.issn.1003-6997.2020.16.016
[25] 王昱, 卢世国, 刘娟娟, 等. 春季枯水期黑河水体理化性质的空间分布特征 [J]. 生态与农村环境学报, 2019, 35(4): 433-441. WANG Y, LU S G, LIU J J, et al. Spatial distribution characteristics of the physical and chemical properties of water in the Heihe river during low water periods in spring [J]. Journal of Ecology and Rural Environment, 2019, 35(4): 433-441(in Chinese).
[26] 甘肃水利水利厅. 2018年甘肃省水资源公报[M]. 兰州: 甘肃文化出版社, 2019. Gansu Water Resources and Water Conservancy Department. 2018 Gansu Water Resources Bulletin[M]. Lanzhou: Gansu Culture Publishing House, 2019.
[27] 杨冰, 邓刚. 张掖黑河湿地国家级自然保护区水质现状分析研究 [J]. 地下水, 2021, 43(4): 98-101. YANG B, DENG G. Analysis of water quality in Zhangye Black River wetland national nature Reserve [J]. Ground Water, 2021, 43(4): 98-101(in Chinese).
[28] 郑发斌. 大靖峡水库水环境综合治理探讨 [J]. 甘肃水利水电技术, 2018, 54(8): 58-60. ZHENG F B. Discussion on comprehensive treatment of water environment in Dajingxia Reservoir [J]. Gansu Water Resources and Hydropower Technology, 2018, 54(8): 58-60(in Chinese).
[29] 王昱, 卢世国, 冯起, 等. 黑河上中游水质时空分异特征及污染源解析 [J]. 中国环境科学, 2019, 39(10): 4194-4204. doi: 10.3969/j.issn.1000-6923.2019.10.020 WANG Y, LU S G, FENG Q, et al. Spatio-temporal characteristics and source identification of water pollutants in the upper and middle reachers of Heihe River [J]. China Environmental Science, 2019, 39(10): 4194-4204(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.10.020
[30] 宋天琪, 李计生, 张天昌, 等. 物元可拓法在疏勒河水系水质评价中的运用 [J]. 地下水, 2014, 36(5): 159-160,169. doi: 10.3969/j.issn.1004-1184.2014.05.054 SONG T Q, LI J S, ZHANG T C, et al. Application of matter-element extension method in water quality evaluation of Shule River [J]. Ground Water, 2014, 36(5): 159-160,169(in Chinese). doi: 10.3969/j.issn.1004-1184.2014.05.054
[31] 缪云腾, 付雪, 李平平, 等. 石羊河流域地下水化学类型及多年水质动态特征分析 [J]. 地下水, 2020, 42(6): 47-49. MIAO Y T, FU X, LI P P, et al. Hydrochemicaltypes of groundwater and water quality dynamic characteristics for many years in Shiyang River Basin [J]. Ground Water, 2020, 42(6): 47-49(in Chinese).
[32] 孙悦, 李再兴, 张艺冉, 等. 雄安新区—白洋淀冰封期水体污染特征及水质评价 [J]. 湖泊科学, 2020, 32(4): 952-963. doi: 10.18307/2020.0405 SUN Y, LI Z X, ZHANG Y R, et al. Water pollution characteristics and water quality evaluation during the freezing period in Lake Baiyangdian of Xiongan New Area [J]. Journal of Lake Sciences, 2020, 32(4): 952-963(in Chinese). doi: 10.18307/2020.0405
[33] 杜展鹏, 王明净, 严长安, 等. 基于绝对主成分-多元线性回归的滇池污染源解析 [J]. 环境科学学报, 2020, 40(3): 1130-1137. DU Z P, WANG M J, YAN C A, et al. Pollution source apportionment of Lake Dianchi based on absolute principal component score-multiple linear regression [J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1130-1137(in Chinese).