-
溶解性有机质(dissolved organic matter,DOM)是指能够通过0.45 μm滤膜的有机碳组分,是一类以苯环和脂肪烃为骨架并含有多种官能团的复杂多组分有机物[1-2]。DOM广泛存在于环境水体中,约占水体中总有机碳的90%,对全球碳循环具有重要的影响[1-2]。此外,DOM还能显著影响水环境的生物地球化学过程[3-4],包括为微生物循环供给碳源和能源、通过螯合吸附等作用影响重金属和有机污染物的迁移转化、吸收光从而减少光的穿透和引起光化学反应、控制水体里的溶解氧、pH以及营养元素的循环和生物有效性等。因受来源、水质及环境过程的影响,DOM在水环境中的浓度、组成结构及性质差异很大,不同来源和不同组分的聚集进一步加大了DOM组成结构的复杂度和异质性[1]。
DOM在生物地球化学循环中的重要作用推进了人们对其组成和结构的研究,并发展了光谱分析、核磁共振和超高分辨质谱等多种表征DOM的技术[4-7],极大促进了对DOM结构特征、反应活性、参与环境过程以及区域和全球碳循环的认识。尽管如此,人们对DOM的化学组成结构以及DOM在不同环境条件下的迁移转化仍缺乏全面理解[4]。由于DOM本身组成结构极其复杂,且通常以低浓度(1—20 mg·L−1)存在于盐含量高的复杂水体中(淡水盐度约为0.01‰—0.5‰,海水平均盐度为35‰)[4, 8],同时部分表征方法需要低盐、高纯度或高质量的DOM样品[4, 9-10],因此需要发展分离富集DOM的高效前处理方法。分离指将DOM组分与无机组分分开,富集指通过降低溶液总体积从而提高DOM的浓度。对环境水体DOM进行分离富集需要克服3个困难[11]:完全去除水体尤其是海水中的盐、去除水和保留DOM中大部分甚至全部有机物。目前用于分离富集水体中DOM的方法有固相萃取法(solid phase extraction,SPE)[10, 12-13]、超滤法[4, 14-15]、透析法[16]和反渗透/电解析联用法[11, 17-19],且已有文献从原理、步骤和应用等方面对DOM分离技术进行了总结[4, 20-22]。其中SPE能有效分离富集DOM,且简单快捷,重现性好,是目前应用最广的DOM分离富集方法[4]。SPE方法目前存在的主要问题是吸附剂对部分组分的保留性差,或部分组分的洗脱率低,导致SPE在分离富集部分水体DOM的效率仍不理想,近年来相关学者为提升SPE分离富集DOM的效率做了大量工作,然而目前尚缺乏针对SPE分离富集环境水体DOM的进展介绍。
本研究主要归纳和总结了SPE分离富集DOM的原理和步骤、使用的吸附剂、洗脱溶剂和步骤、影响因素,以及提高SPE效率的改进方法,并对SPE萃取DOM的效率和选择性进行了探讨。
固相萃取法分离富集环境水体中溶解性有机质的研究进展
Isolation and concentration of dissolved organic matter by using solid phase extraction method in environmental waters
-
摘要: 溶解性有机质(dissolved organic matter,DOM)是具有芳香族和脂肪族碳氢化合物结构以及富含多种官能团和元素的复杂有机混合物,在陆生和水生环境中的物理、化学和生物过程中起着至关重要的作用。DOM巨大的复杂性和异质性,以及在环境水体中的浓度较低并与无机盐共存,给分离富集DOM并对其组成和结构进行全面深入分析带来了巨大的挑战。本文围绕DOM分离富集应用最广的固相萃取法(solid phase extraction,SPE),阐述了该方法的原理和步骤,萃取DOM的吸附剂、洗脱和影响因素、以及多SPE柱串联和SPE结合其他方法萃取DOM的进展,以期促进对基于SPE分离富集水体中DOM及其表征的认识和理解。
-
关键词:
- 固相萃取法(SPE) /
- 溶解性有机质(DOM) /
- 表征方法 /
- 分离富集
Abstract: Dissolved organic matter (DOM) is a complex mixture with aromatic and aliphatic hydrocarbon structures and rich in various functional groups and elements. DOM plays a vital role in physical, chemical and biological processes in terrestrial and aquatic environments. The huge complexity and heterogeneity of DOM, as well as its low concentration in environmental waters and coexistence with inorganic salts, bring great challenges to the isolation and concentration of DOM, as well as the further comprehensive analysis of its compositions and structures. This article focuses on the solid phase extraction (SPE), which is the most widely used method for DOM isolation and concentration, describes the principle and basic processes of this method, the adsorbents for DOM extraction, elution and influencing factors, and summarizes the research progress on the improvement of extraction efficiency by using multiple SPE adsorbents and combining the SPE with other methods for DOM extraction. This article will provide a scientific basis for enhancing the understanding of DOM extraction by SPE and DOM characterization. -
吸附剂类别
Category吸附剂
Adsorbent组成
Composition平均孔径/nm
Mean pore
size粒径和形状/μm
Particle size
and shape封端
Endca-
pped非极性 PPL 官能化修饰的SDVB/聚合物 15 125,半球形 是 C18OH 十八烷基/硅胶基 15 40和120,不规则 否 C18 官能化的十八烷基/硅胶基 6 40和120,不规则 是 C18EWP 官能化修饰的SDVB 50 40,不规则 是 HLB N-乙烯基吡咯烷酮-二乙烯基苯/聚合物 8 30 — ENVI-Carb 石墨化无孔碳黑 n.a. 80—100 — ENV 非官能化聚SDVB/聚合物 45 125,球形 — ENVI-18 十八烷基/硅胶基 6 45,不规则 是 中等非极性 C8 辛基/硅胶基 6 40和120,不规则 是 CH 环己基/硅胶基 6 40和120,不规则 是 PH 苯基/硅胶基 6 40—120,不规则 是 阴离子交换混合 WAX 哌嗪基,N-乙烯基吡咯烷酮-二乙烯基苯/聚合物 8 30 否 MAX 季胺基,N-乙烯基吡咯烷酮-二乙烯基苯/聚合物 8 30 否 PAX 官能化亲水SDVB 10 45,球形 — SAX 三甲基氨丙基/硅胶基 6 40和120,不规则 否 阳离子交换混合 PCX 官能化亲水SDVB 10 45,球形 — MCX 磺酸基,N-乙烯基吡咯烷酮-二乙烯基苯/聚合物 8 30 否 WCX 羧基,N-乙烯基吡咯烷酮-二乙烯基苯/聚合物 8 30 否 Strata XC 磺酸基/聚合物 n.a. 33 — SCX 苯磺酸/硅胶基 6 40和120,不规则 否 弱非极性和中极性 CN-E 氰丙基/硅胶基 6 40—120,不规则 是 CN-U 氰丙基/硅胶基 6 40—120,不规则 否 CBA 羧酸/硅胶基 6 40,不规则 是 极性和强极性 NH2 氨丙基/硅胶基 6 40,不规则 否 2OH 二醇基/硅胶基 6 40,不规则 否 SI 自然硅/硅胶基 6 40和120,不规则 否 DPA-6S 聚酰胺/聚合物 n.a. 50—160 — 注:n.a.(not available)表示未获得该数据,“—”表示吸附剂没有该性质。封端是指:加入单官能团化合物使吸附剂的端基功能团消失.
Note: n.a. indicates that the data is not available, “-” indicates that the sorbent does not have this property. Endcapped refers to the disappearance of the end-group of the adsorbent by the addition of monofunctional compounds. -
[1] LEENHEER J A, CROUE J P. Peer reviewed: Characterizing aquatic dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(1): 18A-26A. [2] MOPPER K, STUBBINS A, RITCHIE J D, et al. Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy [J]. Chemical Reviews, 2007, 107(2): 419-442. doi: 10.1021/cr050359b [3] HASSETT J P. Dissolved natural organic matter as a microreactor [J]. Science, 2006, 311(5768): 1723-1724. doi: 10.1126/science.1123389 [4] MINOR E C, SWENSON M M, MATTSON B M, et al. Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis [J]. Environmental Science. Processes & Impacts, 2014, 16(9): 2064-2079. [5] DERRIEN M, BROGI S R, GONçALVES-ARAUJO R. Characterization of aquatic organic matter: Assessment, perspectives and research priorities [J]. Water Research, 2019, 163(Octa15): 114908.1-114908.17. [6] NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM): A critical review [J]. Analytical and Bioanalytical Chemistry, 2013, 405(1): 109-124. doi: 10.1007/s00216-012-6363-2 [7] DERENNE S, NGUYEN TU T T. Characterizing the molecular structure of organic matter from natural environments: An analytical challenge [J]. Comptes Rendus Geoscience, 2014, 346(3): 53-63. [8] LI Y, HARIR M, LUCIO M, et al. Comprehensive structure selective characterization of dissolved organic matter by reducing molecular complexity and increasing analytical dimensions [J]. Water Research, 2016, 106: 477-487. [9] GREEN N W, MICHAEL PERDUE E, AIKEN G R, et al. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter [J]. Marine Chemistry, 2014, 161: 14-19. doi: 10.1016/j.marchem.2014.01.012 [10] DITTMAR T, KOCH B, HERTKORN N, et al. A simple and efficient method for the solid phase extraction of dissolved organic matter (SPE-DOM) from seawater [J]. Limnology and Oceanography: Methods, 2008, 6(6): 230-235. doi: 10.4319/lom.2008.6.230 [11] GURTLER B K, VETTER T A, PERDUE E M, et al. Combining reverse osmosis and pulsed electrical current electrodialysis for improved recovery of dissolved organic matter from seawater [J]. Journal of Membrane Science, 2008, 323(2): 328-336. doi: 10.1016/j.memsci.2008.06.025 [12] LI Y, HARIR M, UHL J, et al. How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation [J]. Water Research, 2017, 116: 316-323. doi: 10.1016/j.watres.2017.03.038 [13] SLEIGHTER R L, HATCHER P G. Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization fourier transform ion cyclotron resonance mass spectrometry [J]. Marine Chemistry, 2008, 110(3-4): 140-152. doi: 10.1016/j.marchem.2008.04.008 [14] BENNER R, PAKULSKI J D, MCCARTHY M, et al. Bulk chemical characteristics of dissolved organic matter in the ocean [J]. Science, 1992, 255(5051): 1561-1564. doi: 10.1126/science.255.5051.1561 [15] SIMJOUW J P, MINOR E C, MOPPER K. Isolation and characterization of estuarine dissolved organic matter: Comparison of ultrafiltration and C18 solid phase extraction techniques [J]. Marine Chemistry, 2005, 96(3): 219-235. [16] TFAILY M M, HODGKINS S, PODGORSKI D C, et al. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2012, 404(2): 447-457. doi: 10.1007/s00216-012-6120-6 [17] VETTER T A, PERDUE E M, INGALL E, et al. Combining reverse osmosis and electrodialysis for more complete recovery of dissolved organic matter from seawater [J]. Separation and Purification Technology, 2007, 56(3): 383-387. doi: 10.1016/j.seppur.2007.04.012 [18] KOPRIVNJAK J F, PFROMM P H, INGALL E, et al. Chemical and spectroscopic characterization of marine dissolved organic matter isolated using coupled reverse osmosis–electrodialysis [J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4215-4231. doi: 10.1016/j.gca.2009.04.010 [19] KOPRIVNJAK J F, PERDUE E M, PFROMM P H. Coupling reverse osmosis with electrodialysis to isolate natural organic matter from fresh waters [J]. Water Research, 2006, 40(18): 3385-3392. doi: 10.1016/j.watres.2006.07.019 [20] 王立英, 吴丰昌, 张润宇. 应用XAD系列树脂分离和富集天然水体中溶解有机质的研究进展 [J]. 地球与环境, 2006, 34(1): 90-96. WANG L Y, WU F C, ZHANG R Y. A method of separate and concentrate dissolved organic matter by xad resin in natural aquatic systems [J]. Earth and Environment, 2006, 34(1): 90-96(in Chinese).
[21] 王立英, 吴丰昌, 黎文, 等. 水体溶解有机质富集分离方法的研究进展 [J]. 地球与环境, 2008, 36(2): 171-178. WANG L Y, WU F C, LI W, et al. Advances in research on the methods of concentrating and isolating dissolved organic matter in aquatic water [J]. Earth and Environment, 2008, 36(2): 171-178(in Chinese).
[22] 卫丹丹, 王映辉, 许云平. 海水溶解有机质分离富集方法的发展与比较 [J]. 海洋环境科学, 2019, 38(6): 977-984. doi: 10.12111/j.mes20190623 WEI D D, WANG Y H, XU Y P. Development and comparison of pretreatment methods for separation and enrichment of marine dissolved organic matter [J]. Marine Environmental Science, 2019, 38(6): 977-984(in Chinese). doi: 10.12111/j.mes20190623
[23] PERMINOVA I V, DUBINENKOV I V, KONONIKHIN A S, et al. Molecular mapping of sorbent selectivities with respect to isolation of arctic dissolved organic matter as measured by Fourier transform mass spectrometry [J]. Environmental Science & Technology, 2014, 48(13): 7461-7468. [24] MÉNDEZ-DÍAZ J D, SHIMABUKU K K, MA J, et al. Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: A natural abiotic source of organobromine and organoiodine [J]. Environmental Science & Technology, 2014, 48(13): 7418-7427. [25] LI Y, HARIR M, LUCIO M, et al. Proposed guidelines for solid phase extraction of suwannee river dissolved organic matter [J]. Analytical Chemistry, 2016, 88(13): 6680-6688. doi: 10.1021/acs.analchem.5b04501 [26] COPPOLA A I, WALKER B D, DRUFFEL E R M. Solid phase extraction method for the study of black carbon cycling in dissolved organic carbon using radiocarbon [J]. Marine Chemistry, 2015, 177: 697-705. doi: 10.1016/j.marchem.2015.10.010 [27] LOUCHOUARN P, AMON R M W, DUAN S, et al. Analysis of lignin-derived phenols in standard reference materials and ocean dissolved organic matter by gas chromatography/tandem mass spectrometry [J]. Marine Chemistry, 2010, 118(1): 85-97. [28] FONTANALS N, MARCE R M, BORRULL F. New hydrophilic materials for solid phase extraction [J]. Trac-Trends in Analytical Chemistry, 2005, 24(5): 394-406. doi: 10.1016/j.trac.2005.01.012 [29] BREZONIK P L, BLOOM P R, SLEIGHTER R L, et al. Chemical differences of aquatic humic substances extracted by XAD-8 and DEAE-cellulose [J]. Journal of Environmental Chemical Engineering, 2015, 3(4, Part B): 2982-2990. doi: 10.1016/j.jece.2015.03.004 [30] KIDA M, SATO H, OKUMURA A, et al. Introduction of DEAE Sepharose for isolation of dissolved organic matter [J]. Limnology, 2019, 20(2): 153-162. doi: 10.1007/s10201-018-0561-3 [31] RAEKE J, LECHTENFELD O J, WAGNER M, et al. Selectivity of solid phase extraction of freshwater dissolved organic matter and its effect on ultrahigh resolution mass spectra [J]. Environmental Science. Processes & Impacts, 2016, 18(7): 918-927. [32] YANG K L, ZHANG Y L, DONG Y P, et al. Selectivity of solid phase extraction for dissolved organic matter in the hypersaline Da Qaidam Lake, China [J]. Environmental Science. Processes & Impacts, 2017, 19(11): 1374-1386. [33] ZOU C, LI M, CAO T, et al. Comparison of solid phase extraction methods for the measurement of humic-like substances (HULIS) in atmospheric particles [J]. Atmospheric Environment, 2020, 225: 117370. doi: 10.1016/j.atmosenv.2020.117370 [34] LAM B, BAER A, ALAEE M, et al. Major structural components in freshwater dissolved organic matter [J]. Environmental Science & Technology, 2007, 41(24): 8240-8247. [35] KRUGER B R, DALZELL B J, MINOR E C. Effect of organic matter source and salinity on dissolved organic matter isolation via ultrafiltration and solid phase extraction [J]. Aquatic Sciences, 2011, 73(3): 405-417. doi: 10.1007/s00027-011-0189-4 [36] WANG X, JI Y, SHI Q, et al. Characterization of wastewater effluent organic matter with different solid phase extraction sorbents [J]. Chemosphere, 2020, 257: 127235. doi: 10.1016/j.chemosphere.2020.127235 [37] ZHANG B, SHAN C, HAO Z, et al. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity [J]. Water Research, 2019, 157: 472-482. doi: 10.1016/j.watres.2019.04.002 [38] GAO Y, WANG W, HE C, et al. Fractionation and molecular characterization of natural organic matter (NOM) by solid-phase extraction followed by FT-ICR MS and ion mobility MS [J]. Analytical and Bioanalytical Chemistry, 2019, 411(24): 6343-6352. doi: 10.1007/s00216-019-01943-7 [39] LV J, ZHANG S Z, LUO L, et al. Solid-phase extraction-stepwise elution (SPE-SE) procedure for isolation of dissolved organic matter prior to ESI-FT-ICR-MS analysis [J]. Analytica Chimica Acta, 2016, 948: 55-61. doi: 10.1016/j.aca.2016.10.038 [40] REEMTSMA T, THESE A, LINSCHEID M, et al. Molecular and structural characterization of dissolved organic matter from the deep ocean by FTICR-MS, including hydrophilic nitrogenous organic molecules [J]. Environmental Science & Technology, 2008, 42(5): 1430-1437. [41] THURMAN E M, MARGARET S M. Solid phase extraction: Principles and practice[M]. New York: Wiley, 1998. [42] FANG Z, HE C, LI Y Y, et al. Fractionation and characterization of dissolved organic matter (DOM) in refinery wastewater by revised phase retention and ion-exchange adsorption solid phase extraction followed by ESI FT-ICR MS [J]. Talanta, 2017, 162: 466-473. doi: 10.1016/j.talanta.2016.10.064 [43] WANG W, HE C, GAO Y, et al. Isolation and characterization of hydrophilic dissolved organic matter in waters by ion exchange solid phase extraction followed by high resolution mass spectrometry [J]. Environmental Chemistry Letters, 2019, 17(4): 1857-1866. doi: 10.1007/s10311-019-00898-6 [44] ZHEREBKER A, KOSTYUKEVICH Y, KONONIKHIN A, et al. Enumeration of carboxyl groups carried on individual components of humic systems using deuteromethylation and Fourier transform mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2017, 409(9): 2477-2488. doi: 10.1007/s00216-017-0197-x [45] KOSTYUKEVICH Y, ACTER T, ZHEREBKER A, et al. Hydrogen/deuterium exchange in mass spectrometry [J]. Mass Spectrometry Reviews, 2018, 37(6): 811-853. doi: 10.1002/mas.21565 [46] ZHEREBKER A, SHIRSHIN E, KHARYBIN O, et al. Separation of benzoic and unconjugated acidic components of leonardite humic material using sequential solid-phase extraction at different pH values as revealed by Fourier transform ion cyclotron resonance mass spectrometry and correlation nuclear magnetic resonance spectroscopy [J]. Journal of Agricultural and Food Chemistry, 2018, 66(46): 12179-12187. doi: 10.1021/acs.jafc.8b04079 [47] ZHEREBKER A, SHIRSHIN E, RUBEKINA A, et al. Optical properties of soil dissolved organic matter are related to acidic functions of its components as revealed by fractionation, selective deuteromethylation, and ultrahigh resolution mass spectrometry [J]. Environmental Science & Technology, 2020, 54(5): 2667-2677. [48] BROEK T A B, WALKER B D, GUILDERSON T P, et al. Coupled ultrafiltration and solid phase extraction approach for the targeted study of semi-labile high molecular weight and refractory low molecular weight dissolved organic matter [J]. Marine Chemistry, 2017, 194: 146-157. doi: 10.1016/j.marchem.2017.06.007 [49] LI L J, FANG Z, HE C, et al. Separation and characterization of marine dissolved organic matter (DOM) by combination of Fe(OH)3 co-precipitation and solid phase extraction followed by ESI FT-ICR MS [J]. Analytical and Bioanalytical Chemistry, 2019, 411(10): 2201-2208. doi: 10.1007/s00216-019-01663-y