-
现阶段,塑料由于其耐用性和低成本而被广泛应用于日常生活中。PlasticEurope的最新统计数据显示,2019年全球塑料产量高达3.59亿t[1],其中仅有一小部分(约6%—26%)会被回收利用[2]。据估计,环境中塑料废物的积累量超过49亿t[3]。未经正确处理/处置的塑料会在自然条件下风化破碎成微塑料(MPs),造成更大的环境风险。
MPs具有良好的疏水性和迁移性,是环境中污染物的优良载体[4-6]。大量环境监测结果揭示了吸附在MPs上的污染物的时空分布,是MPs作为污染物载体的直接证据[6-7]。一方面,MPs可以作为二次污染源,源源不断地向周围环境释放已吸附的污染物;另一方面,MPs易被水生生物误食,与吸附的污染物一起对摄食生物造成联合毒性,甚至沿食物链逐级传递,危害生态系统健康。为了有效评估和预防MPs的生态风险,有必要系统地了解其对污染物的吸附机制。
因此,本文系统总结了不同类型MPs与亲水、疏水性有机污染物及重金属的相互作用机制、影响因素及相关模型的研究进展,强调了复合污染物竞争吸附的相关研究的重要性,重点归纳了老化过程对微塑料吸附行为的影响机制,并提出了当前研究领域的关键挑战和对未来研究方向的展望,以期为揭示MPs的环境化学行为和生态风险提供参考。
微塑料吸附机制研究进展
Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review
-
摘要:
微塑料(MPs)广泛存在于土壤和水体环境中,可以充当载体影响污染物的二次释放和生物毒性,对生态环境造成巨大威胁。了解MPs的吸附机制有助于明确MPs对污染物的富集能力和潜在环境风险。本研究总结了MPs与亲水、疏水和重金属污染物之间相互作用机制,探讨了MPs性质、老化过程及环境因素对MPs吸附行为的影响,剖析了现阶段吸附模型及预测模型的发展现状,并针对现阶段研究的不足和未来的研究方向提出展望。本研究认为,MPs与污染物的相互作用机制主要包括疏水、静电、π-π和氢键相互作用;污染物和MPs性质、老化作用和环境因素会影响MPs的吸附行为;混合阶动力学模型、现象动力学模型以及预测模型的发展有助于明晰和快速预测MPs的吸附机制;今后的研究应更加关注复合污染物与MPs的相互作用机制、老化对MPs吸附的影响机制以及MPs吸附和预测模型的应用和开发。
Abstract:Microplastics (MPs) are widely distributed in different environmental media and have raised extensive attention as good vectors for pollutants. MPs can either act as secondary sources of adsorbed pollutants to ambient environment or pose joint biological toxicity with carried contaminants. Investigations on sorption behavior and mechanisms of contaminants to MPs help to clarify MPs ability to enrich pollutants and their potential environmental risks. In this study, the interaction mechanisms between MPs and hydrophilic organic contaminants, hydrophobic organic contaminants and heavy metals were summarized. Besides, the effects of MPs properties, aging process and environmental factors on the adsorption behavior of MPs were discussed. Moreover, the development status of the current adsorption and prediction models were analyzed. Last but not least, future research directions were put forward based on the shortcomings of the current researches. The sorption mechanisms between MPs and pollutants mainly include hydrophobic, electrostatic, π-π and hydrogen bond interactions. The properties of MPs and pollutants, aging and environmental factors will affect the adsorption behavior of MPs. The development of mixed-order kinetics model, phenomenological kinetics model and predictive models is helpful to clarify and quickly predict the adsorption mechanism of MPs. Further efforts should be put into the interactions between combined pollutants and combined MPs, the effects of aging on MPs adsorption behaviors, and the application and development of relevant models.
-
Key words:
- microplastics /
- adsorption /
- combined contaminations /
- influence factors /
- aging /
- predictive models
-
表 1 MPs与有机污染物的相互作用机制
Table 1. Interaction mechanism between MPs and organic pollutants
污染物
PollutantsMPs 疏水相互作用
Hydrophobic
partitioning静电相互作用
Electrostatic
interaction表面络合
Surface
complexation范德华力
Van der
Waals force氢键相
互作用
Hydrogen
bondπ-π相
互作用
π-π
interaction参考文献
Reference(1)疏水性污染物 E2 原始/老化PS, PVC, PE √ √ √ [9] NAP PS √ √ √ [10] NIT, PHE PS √ √ [11] PAHs PT, PU, UF √ √ [12] PAHs PS, PCL, PUR, PBS √ √ √ [13] 9-NAnt PE, PP, PS √ √ [14] 双酚类化学品 PVC √ √ √ [15] (2)亲水性污染物 AML PS √ √ [16] 老化PS √ ATV PS √ √ 老化PS √ AMX, CIP, SDZ, TC, TMP PA, PE, PS, PP, PVC √ √ √ [17] PPCPs PP, LDPE, HDPE, PVC √ √ [18] SMT PA, PE, PS, PET, PVC, PP √ √ [19] SMX PA, PE, PS, PET, PVC, PP √ √ [20] TC PE, PP, PS √ √ √ [21] TCS PVC √ √ √ [22] TYL PE, PP, PS, PVC √ √ √ [23] 药物 PE √ √ [24] 离子有机污染物 PVC, PE, PP, PS √ √ [25] 表 1 MPs的比表面积(SSA)及其对污染物的最大吸附容量(Qm)
Table 1. MPs specific surface area and maximum adsorption capacity for pollutants
污染物
PollutantsMPs SSA /(m2·g−1) Qm /(mg·g−1) 参考文献
Reference(1)疏水性污染物 PYR PVC 1.3800 0.0787 [105] PS 1.0500 0.1270 PE 0.9600 0.3330 BPA PVC 9.7700 0.9230 [15] BPAF PVC 9.7700 1.0500 BPB PVC 9.7700 0.9930 BPF PVC 9.7700 0.7890 BPS PVC 9.7700 0.7870 PHE PVC 1.8700 0.3030 [29] PS 2.3500 0.4000 PE 6.9100 0.7143 PBDEs PP 0.0004 0.0002 [88] PA 0.0017 0.0002 PS 0.0054 0.0001 E2 PS 0.7183 0.0924 [9] PE 0.2367 0.0863 PVC 0.1339 0.0760 老化PS 1.7407 0.2290 老化PE 1.2041 0.1670 老化PVC 0.9041 0.1090 FIP PLA 0.4440 0.0040 [116] PBS 0.6010 0.0060 PE 0.0011 0.0110 PVC 0.0005 0.0120 PS 0.0037 0.0130 PP 0.0013 0.0260 (2)亲水性污染物 TYL PE 0.7506 0.6667 [23] PP 1.1961 0.0833 PS 1.5392 1.4285 PVC 2.1454 1.6667 TYL PE 0.5080 1.6667 [117] PVC 0.8360 3.3333 TC PE 0.2341 0.1090 [21] PP 0.0365 0.1130 PS 0.0596 0.1670 TC PS-SO3H 72.9200 17.8700 [118] PS 49.5200 11.1100 PS-NH2 86.3630 21.2700 TC PA 8.7100 0.0750 [95] PS 0.0010 0.0860 PE 2.1100 0.1540 TCS PS 0.7300 −0.9800 [119] PE 1.1900 6.1100 TCS PS 2.5300 1.0000 [96] PS 1.8800 0.8900 PS 0.6700 0.7800 PS 0.5800 0.7200 AMX PE 1.4444 8.7980 [120] PET 0.3429 7.1790 PS 2.6363 7.6960 PP 3.2222 4.0280 PVC 0.5929 6.9830 SMX PE 0.2341 0.1080 [8] 苯酚 PE 0.1290 −0.1087 [28] 苯酚 PET 0.3429 2.8020 [120] PS 2.6363 2.7660 PP 3.2222 1.2490 PVC 0.5929 2.2430 OTC PS 2.0300 1.5200 [76] *最大吸附容量Qm基于Langmiur吸附等温线得出。
The maximum adsorption capacity (Qm) was obtained based on Langmiur adsorption isotherm.表 2 MPs吸附行为的影响因素
Table 2. Factors influencing the adsorption behavior of MPs
污染物
PollutantsMPs 盐度
SalinitypH 有机质
Organic matter温度
Temperature参考文献
Reference(1)疏水性污染物 E2 原始/老化PS, PVC, PE ↓ ↓ [9] E2 PVC, PMMA, PC, PS, PE, PA ↑ * [60] PAEs PVC, PE, PS ↑ * * [85] PAHs PT, PU, UF ↑ [12] PAHs PE, PS ↑ [86] PAHs PE, PS, PVC ↓ [87] PBDEs PE, PP, PA, PS * * ↓ [88] PBDEs PS * * [89] 老化PS ↓ * PBDEs 原始/老化PE, PS * ↓ [90] PCBs PP ↑ ↓ [91] PHCs PP,PE,PVC ↓ 先↑后↓ [92] 9-NAnt PE * * [14] PP, PS ↓ ↓ 胺微污染物 PE ↑ [93] (2)亲水性污染物 CBZ, TC PE * * ↓ * [35] CIP 原始/老化PS, PVC ↓ 先↑后↓ [39] OTC 原始/老化PS ↓ pH=5最大 ↑ [76] PFASs HDPE, PS, PS-COOH ↓ ↓ [37] PPCPs PP * [94] PPCPs PP, LDPE, HDPE, PVC ↓ 复杂 [18] SMT PA, PE, PS, PET, PVC, PP ↓ ↓ [19] SMX PE * * * [8] SMX PA, PE, PS, PET, PVC, PP ↓ ↓ [20] TC PE, PP, PS * pH=6最大 ↑ [21] TC PA ↓ ↑ 先↑后↓ [95] PE ↓ ↑ ↓ PS ↓ ↓ 先↑后↓ TCS PS * ↓ * [96] TCS 老化PP ↑ [77] TCS PVC ↑ ↓ [22] TYL PE, PP, PS, PVC 先↑后↓ ↓ [23] “↑”促进作用;“↓”抑制作用;“*”无明显影响。“↑” promotion; “↓” inhibition; “*” no obvious effect. 表 3 常见吸附模型表达式及特征
Table 3. Expressions and features of adsorption models
模型
Model表达式
Expression特点
FeaturePFO (1) $ \dfrac{{\rm{d}}{q}_{t}}{{\rm{d}}t}={k}_{1}\left({q}_{e}-{q}_{t}\right) $ 可用于描述非平衡条件下高初始吸附物浓度的动力学过程 PSO (2) $ \dfrac{{\rm{d}}{q}_{t}}{{\rm{d}}t}={k}_{2}{\left({q}_{e}-{q}_{t}\right)}^{2} $ ①吸附速率由吸附空位数的平方决定,该空位未被吸附剂表面占据,并且吸附过程涉及电子共享或电子在吸附剂和被吸附物之间转移;②可用于描述低初始吸附物浓度的动力学过程和化学吸附过程,但不能描述在短时间内吸附能力的急剧上升 Elovich (3) $ \dfrac{{\rm{d}}{q}_{t}}{{\rm{d}}t}={\alpha e}^{-\beta q} $ 适用于描述材料在异质表面上的吸附过程 MO (4) $ \dfrac{{\rm{d}}{q}_{t}}{{\rm{d}}t}={k}_{1}\left({q}_{e}-{q}_{t}\right)+{k}_{2}{\left({q}_{e}-{q}_{t}\right)}^{2} $ 适用于描述整个吸附过程 Henrry (5) $ {q}_{e}={k}_{d}{C}_{e} $ 表明存在明显的分配过程 Langmiur (6) $ {q}_{e}=\dfrac{{q}_{m}b{C}_{e}}{1+b{C}_{e}} $ 表明吸附剂在均质吸附剂表面上被单层覆盖 Freundlich (7) $ {q}_{e}={k}_{f}{C}_{e}^{n} $ 表明吸附剂表面的非均质性以及吸附位点及其能量的指数分布,适用于单层和多层吸附 Tempkin (8) $ {q}_{e}=\dfrac{RT}{{b}_{T}}{\rm{ln}}\left({A}_{T}{C}_{e}\right) $ 考虑了吸附剂与吸附剂相互作用的影响,并假设吸附能随表面覆盖率线性降低 Dubinin-Radushkevich (9) $ {q}_{e}={q}_{s}{\rm{exp}}\left(-B{\epsilon }^{2}\right) $ 经验模型,其吸附遵循孔隙填充机制 Redlich-Petersen (10) $ {q}_{e}=\dfrac{{K}_{R}{C}_{e}}{1+{\alpha }_{R}{C}_{e}^{\beta }} $ 兼具Freundlich和Langmuir模型的特征,并将3个参数合并到方程中 *qt和qe(mg·g−1)分别是在时间t和平衡时固相中吸附质的浓度;k1和k2(min−1)分别是PFO和PSO速率常数;α(ng·g−1·h−1)是初始吸附速率,β(g·ng−1)是解吸常数。吸附等温线模型的参数含义参见原文[19, 105].
qt and qe (mg·g−1) are the concentration of adsorbed substance in the solid phase at time t and equilibrium, respectively. k1 and k2(min−1) are PFO and PSO rate constants, respectively. α (ng·g−1·h−1) is the initial adsorption rate and β (g·ng−1) is the desorption constant. The parameters of the adsorption isotherm model are given in the original articles[19, 105]. -
[1] PlasticEurope. Plastics—The Facts 2020, An analysis of European plastics production, demand and waste data, 2020[EB/OL].https://www.endseurope.com/ [2] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. [3] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782 [4] TEUTEN E L, ROWLAND S J, GALLOWAY T S, et al. Potential for plastics to transport hydrophobic contaminants [J]. Environmental Science & Technology, 2007, 41(22): 7759-7764. [5] MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment [J]. Environmental Science & Technology, 2001, 35(2): 318-324. [6] FRIAS J P G L, SOBRAL P, FERREIRA A M. Organic pollutants in microplastics from two beaches of the Portuguese Coast [J]. Marine Pollution Bulletin, 2010, 60(11): 1988-1992. doi: 10.1016/j.marpolbul.2010.07.030 [7] 李昇昇, 李良忠, 李敏, 等. 环境样品中微塑料及其结合污染物鉴别分析研究进展 [J]. 环境化学, 2020, 39(4): 960-974. doi: 10.7524/j.issn.0254-6108.2019102304 LI S S, LI L Z, LI M, et al. Study on identification of microplastics and the combined pollutants in environmental samples [J]. Environmental Chemistry, 2020, 39(4): 960-974(in Chinese). doi: 10.7524/j.issn.0254-6108.2019102304
[8] XU B L, LIU F, BROOKES P C, et al. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 131(Pt A): 191-196. [9] HU B Y, LI Y X, JIANG L S, et al. Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil [J]. Journal of Hazardous Materials, 2020, 400: 123325. doi: 10.1016/j.jhazmat.2020.123325 [10] YU H D, YANG B, WAIGI M G, et al. The effects of functional groups on the sorption of naphthalene on microplastics [J]. Chemosphere, 2020, 261: 127592. doi: 10.1016/j.chemosphere.2020.127592 [11] WANG J, LIU X H, LIU G N, et al. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene [J]. Ecotoxicology and Environmental Safety, 2019, 173: 331-338. doi: 10.1016/j.ecoenv.2019.02.037 [12] ZHANG P, HUANG P, SUN H W, et al. The structure of agricultural microplastics (PT, PU and UF) and their sorption capacities for PAHs and PHE derivates under various salinity and oxidation treatments [J]. Environmental Pollution, 2020, 257: 113525. doi: 10.1016/j.envpol.2019.113525 [13] ZHAO L F, RONG L L, XU J P, et al. Sorption of five organic compounds by polar and nonpolar microplastics [J]. Chemosphere, 2020, 257: 127206. doi: 10.1016/j.chemosphere.2020.127206 [14] ZHANG J H, CHEN H B, HE H, et al. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions [J]. Chemosphere, 2020, 245: 125628. doi: 10.1016/j.chemosphere.2019.125628 [15] WU P F, CAI Z W, JIN H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics [J]. The Science of the Total Environment, 2019, 650(Pt 1): 671-678. [16] LIU P, LU K, LI J L, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates [J]. Journal of Hazardous Materials, 2020, 384: 121193. doi: 10.1016/j.jhazmat.2019.121193 [17] LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on microplastics [J]. Environmental Pollution, 2018, 237: 460-467. doi: 10.1016/j.envpol.2018.02.050 [18] PUCKOWSKI A, CWIĘK W, MIODUSZEWSKA K, et al. Sorption of pharmaceuticals on the surface of microplastics [J]. Chemosphere, 2021, 263: 127976. doi: 10.1016/j.chemosphere.2020.127976 [19] GUO X, LIU Y, WANG J L. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study [J]. Marine Pollution Bulletin, 2019, 145: 547-554. doi: 10.1016/j.marpolbul.2019.06.063 [20] GUO X, CHEN C, WANG J L. Sorption of sulfamethoxazole onto six types of microplastics [J]. Chemosphere, 2019, 228: 300-308. doi: 10.1016/j.chemosphere.2019.04.155 [21] XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter [J]. Environmental Pollution, 2018, 240: 87-94. doi: 10.1016/j.envpol.2018.04.113 [22] Ma Jie, Zhao Jinghua, Zhu Zhilin, 等. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride [J]. Environmental Pollution, 2019, 254(PTa2): 113104.1-113104. [23] GUO X, PANG J, CHEN S, et al. Sorption properties of tylosin on four different microplastics [J]. Chemosphere, 2018, 209: 240-245. doi: 10.1016/j.chemosphere.2018.06.100 [24] RAZANAJATOVO R M, DING J N, ZHANG S S, et al. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics [J]. Marine Pollution Bulletin, 2018, 136: 516-523. doi: 10.1016/j.marpolbul.2018.09.048 [25] XIA Y, ZHOU J J, GONG Y Y, et al. Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants [J]. Environmental Pollution, 2020, 265(Pt B): 115061. [26] WANG F, WONG C S, CHEN D, et al. Interaction of toxic chemicals with microplastics: A critical review [J]. Water Research, 2018, 139: 208-219. doi: 10.1016/j.watres.2018.04.003 [27] HÜFFER T, WENIGER A K, HOFMANN T. Sorption of organic compounds by aged polystyrene microplastic particles [J]. Environmental Pollution, 2018, 236: 218-225. doi: 10.1016/j.envpol.2018.01.022 [28] WANG Z, CHEN M, ZHANG L, et al. Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China [J]. Science of The Total Environment, 2018, 628-629: 1617-1626. doi: 10.1016/j.scitotenv.2018.02.146 [29] WANG W F, WANG J. Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment [J]. Ecotoxicology and Environmental Safety, 2018, 147: 648-655. doi: 10.1016/j.ecoenv.2017.09.029 [30] GUO X, WANG J L. The chemical behaviors of microplastics in marine environment: A review [J]. Marine Pollution Bulletin, 2019, 142: 1-14. doi: 10.1016/j.marpolbul.2019.03.019 [31] LEE H, SHIM W J, KWON J H. Sorption capacity of plastic debris for hydrophobic organic chemicals [J]. The Science of the Total Environment, 2014, 470/471: 1545-1552. doi: 10.1016/j.scitotenv.2013.08.023 [32] FRIES E, ZARFL C. Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE) [J]. Environmental Science and Pollution Research, 2012, 19(4): 1296-1304. doi: 10.1007/s11356-011-0655-5 [33] HÜFFER T, HOFMANN T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution [J]. Environmental Pollution, 2016, 214: 194-201. doi: 10.1016/j.envpol.2016.04.018 [34] LIU P, BAI F Q, LIN D W, et al. One-pot green synthesis of mussel-inspired myoglobin-gold nanoparticles-polydopamine-graphene polymeric bionanocomposite for biosensor application [J]. Journal of Electroanalytical Chemistry, 2016, 764: 104-109. doi: 10.1016/j.jelechem.2016.01.020 [35] SHEN X C, LI D C, SIMA X F, et al. The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column [J]. Environmental Research, 2018, 166: 377-383. doi: 10.1016/j.envres.2018.06.034 [36] WANG F, SHIH K M, LI X Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics [J]. Chemosphere, 2015, 119: 841-847. doi: 10.1016/j.chemosphere.2014.08.047 [37] LLORCA M, SCHIRINZI G, MARTÍNEZ M, et al. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions [J]. Environmental Pollution, 2018, 235: 680-691. doi: 10.1016/j.envpol.2017.12.075 [38] DU Z, DENG S, BEI Y, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review [J]. Journal of Hazardous Materials, 2014, 274: 443-454. doi: 10.1016/j.jhazmat.2014.04.038 [39] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater [J]. Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100 [40] MARŠIĆ-LUČIĆ J, LUŠIĆ J, TUTMAN P, et al. Levels of trace metals on microplastic particles in beach sediments of the island of Vis, Adriatic Sea, Croatia [J]. Marine Pollution Bulletin, 2018, 137: 231-236. doi: 10.1016/j.marpolbul.2018.10.027 [41] NAQASH N, PRAKASH S, KAPOOR D, et al. Interaction of freshwater microplastics with biota and heavy metals: A review [J]. Environmental Chemistry Letters, 2020, 18(6): 1813-1824. doi: 10.1007/s10311-020-01044-3 [42] HODSON M E, DUFFUS-HODSON C A, CLARK A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates [J]. Environmental Science & Technology, 2017, 51(8): 4714-4721. [43] BRENNECKE D, DUARTE B, PAIVA F, et al. Microplastics as vector for heavy metal contamination from the marine environment [J]. Estuarine, Coastal and Shelf Science, 2016, 178: 189-195. doi: 10.1016/j.ecss.2015.12.003 [44] MASSOS A, TURNER A. Cadmium, lead and bromine in beached microplastics [J]. Environmental Pollution, 2017, 227: 139-145. doi: 10.1016/j.envpol.2017.04.034 [45] HOLMES L A, TURNER A, THOMPSON R C. Interactions between trace metals and plastic production pellets under estuarine conditions [J]. Marine Chemistry, 2014, 167: 25-32. doi: 10.1016/j.marchem.2014.06.001 [46] HOLMES L A, TURNER A, THOMPSON R C. Adsorption of trace metals to plastic resin pellets in the marine environment [J]. Environmental Pollution, 2012, 160(1): 42-48. [47] MARIN P, BORBA C E, MÓDENES A N, et al. Determination of the mass transfer limiting step of dye adsorption onto commercial adsorbent by using mathematical models [J]. Environmental Technology, 2014, 35(18): 2356-2364. doi: 10.1080/09593330.2014.904445 [48] SUZAKI P Y R, MUNARO M T, TRIQUES C C, et al. Biosorption of binary heavy metal systems: Phenomenological mathematical modeling [J]. Chemical Engineering Journal, 2017, 313: 364-373. doi: 10.1016/j.cej.2016.12.082 [49] OCAMPO-PEREZ R, AGUILAR-MADERA C G, DíAZ-BLANCAS V. 3D modeling of overall adsorption rate of acetaminophen on activated carbon pellets [J]. Chemical Engineering Journal, 2017, 321: 510-520. doi: 10.1016/j.cej.2017.03.137 [50] GUO X, WANG J L. The phenomenological mass transfer kinetics model for Sr2+ sorption onto spheroids primary microplastics [J]. Environmental Pollution, 2019, 250: 737-745. doi: 10.1016/j.envpol.2019.04.091 [51] WANG J D, PENG J P, TAN Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals [J]. Chemosphere, 2017, 171: 248-258. doi: 10.1016/j.chemosphere.2016.12.074 [52] PRUNIER J, MAURICE L, PEREZ E, et al. Trace metals in polyethylene debris from the North Atlantic subtropical gyre [J]. Environmental Pollution, 2019, 245: 371-379. doi: 10.1016/j.envpol.2018.10.043 [53] SUN B, HU Y, CHENG H, et al. Releases of brominated flame retardants (BFRs) from microplastics in aqueous medium: Kinetics and molecular-size dependence of diffusion [J]. Water Research, 2019, 151: 215-225. doi: 10.1016/j.watres.2018.12.017 [54] GAO F L, LI J X, SUN C J, et al. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment [J]. Marine Pollution Bulletin, 2019, 144: 61-67. doi: 10.1016/j.marpolbul.2019.04.039 [55] HUANG D F, XU Y B, YU X Q, et al. Effect of cadmium on the sorption of tylosin by polystyrene microplastics [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111255. doi: 10.1016/j.ecoenv.2020.111255 [56] BAKIR A, ROWLAND S J, THOMPSON R C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment [J]. Marine Pollution Bulletin, 2012, 64(12): 2782-2789. doi: 10.1016/j.marpolbul.2012.09.010 [57] ZHOU Y F, YANG Y Y, LIU G H, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene [J]. Water Research, 2020, 184: 116209. doi: 10.1016/j.watres.2020.116209 [58] ZHANG X, ZHENG M, YIN X, et al. Sorption of 3, 6-dibromocarbazole and 1, 3, 6, 8-tetrabromocarbazole by microplastics [J]. Marine Pollution Bulletin, 2019, 138: 458-463. doi: 10.1016/j.marpolbul.2018.11.055 [59] WANG X L, LU J L, XU M G, et al. Sorption of Pyrene by regular and nanoscaled metal oxide particles: Influence of adsorbed organic matter [J]. Environmental Science & Technology, 2008, 42(19): 7267-7272. [60] LIU X, XU J, ZHAO Y, et al. Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics [J]. Chemosphere, 2019, 226: 726-735. doi: 10.1016/j.chemosphere.2019.03.162 [61] VELZEBOER I, KWADIJK C J A F, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes [J]. Environmental Science & Technology, 2014, 48(9): 4869-4876. [62] TOURINHO P S, KOČí V, LOUREIRO S, et al. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation [J]. Environmental Pollution, 2019, 252(2): 1246-1256. [63] RODRIGUES J P, DUARTE A C, SANTOS-ECHEANDíA J, et al. Significance of interactions between microplastics and POPs in the marine environment: A critical overview [J]. TrAC Trends in Analytical Chemistry, 2019, 111: 252-260. doi: 10.1016/j.trac.2018.11.038 [64] PASCALL M A, ZABIK M E, ZABIK M J, et al. Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films [J]. Journal of Agricultural and Food Chemistry, 2005, 53(1): 164-169. doi: 10.1021/jf048978t [65] MÜLLER A, BECKER R, DORGERLOH U, et al. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics [J]. Environmental Pollution, 2018, 240: 639-646. doi: 10.1016/j.envpol.2018.04.127 [66] KARAPANAGIOTI H K, KLONTZA I. Testing phenanthrene distribution properties of virgin plastic pellets and plastic eroded pellets found on Lesvos island beaches (Greece) [J]. Marine Environmental Research, 2008, 65(4): 283-290. doi: 10.1016/j.marenvres.2007.11.005 [67] GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition [J]. Environmental Science & Technology, 2012, 46(13): 7252-7259. [68] TEUTEN E L, SAQUING J M, KNAPPE D R U, et al. Transport and release of chemicals from plastics to the environment and to wildlife [J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2009, 364(1526): 2027-2045. doi: 10.1098/rstb.2008.0284 [69] WANG F, ZHANG M, SHA W, et al. Sorption behavior and mechanisms of organic contaminants to nano and microplastics [J]. Molecules, 2020, 25(8): 1827. doi: 10.3390/molecules25081827 [70] ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris [J]. Environmental Science & Technology, 2013, 47(3): 1646-1654. [71] WU B Y, TAYLOR C M, KNAPPE D R U, et al. Factors controlling alkylbenzene sorption to municipal solid waste [J]. Environmental Science & Technology, 2001, 35(22): 4569-4576. [72] GEORGE S C, THOMAS S. Transport phenomena through polymeric systems [J]. Progress in Polymer Science, 2001, 26(6): 985-1017. doi: 10.1016/S0079-6700(00)00036-8 [73] JAHNKE A, ARP H P H, ESCHER B I, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment [J]. Environmental Science & Technology Letters, 2017, 4(3): 85-90. [74] LI Z W, HU X L, QIN L X, et al. Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons [J]. Water Research, 2020, 170: 115290. doi: 10.1016/j.watres.2019.115290 [75] LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes [J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. [76] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243(Pt B): 1550-1557. [77] WU X, LIU P, HUANG H, et al. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations [J]. the Science of the Total Environment, 2020, 717(May15): 137033.1-137033. [78] JOHANSEN M P, CRESSWELL T, DAVIS J, et al. Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: Use of spectroscopy, microscopy and radiotracer methods [J]. Water Research, 2019, 158: 392-400. doi: 10.1016/j.watres.2019.04.029 [79] WANG Q J, ZHANG Y, WANGJIN X X, et al. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation [J]. Journal of Environmental Sciences (China), 2020, 87: 272-280. doi: 10.1016/j.jes.2019.07.006 [80] DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants [J]. Water Research, 2020, 174: 115634. doi: 10.1016/j.watres.2020.115634 [81] FAYOLLE B, RICHAUD E, COLIN X, et al. Review: degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state [J]. Journal of Materials Science, 2008, 43(22): 6999-7012. doi: 10.1007/s10853-008-3005-3 [82] ANDRADY A L. The plastic in microplastics: A review [J]. Marine Pollution Bulletin, 2017, 119(1): 12-22. doi: 10.1016/j.marpolbul.2017.01.082 [83] de la ORDEN M U, MONTES J M, MARTÍNEZ URREAGA J, et al. Thermo and photo-oxidation of functionalized metallocene high density polyethylene: Effect of hydrophilic groups [J]. Polymer Degradation and Stability, 2015, 111: 78-88. doi: 10.1016/j.polymdegradstab.2014.10.023 [84] Johansen Mathew P. , Prentice Emily, Cresswell Tom, 等. Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm [J]. Journal of Environmental Radioactivity, 2018, 190/191(octa): 130-133. [85] LIU F F, LIU G Z, ZHU Z L, et al. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry [J]. Chemosphere, 2019, 214(JANa): 688-694. [86] SøRENSEN L, ROGERS E, ALTIN D, et al. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions [J]. Environmental Pollution, 2020, 258: 113844. doi: 10.1016/j.envpol.2019.113844 [87] LI R L, TAN H D, ZHANG L L, et al. The implications of water extractable organic matter (WEOM) on the sorption of typical parent, alkyl and N/O/S-containing polycyclic aromatic hydrocarbons (PAHs) by microplastics [J]. Ecotoxicology and Environmental Safety, 2018, 156: 176-182. doi: 10.1016/j.ecoenv.2018.03.021 [88] XU P C, GE W, CHAI C, et al. Sorption of polybrominated diphenyl ethers by microplastics [J]. Marine Pollution Bulletin, 2019, 145: 260-269. doi: 10.1016/j.marpolbul.2019.05.050 [89] WU J, XU P C, CHEN Q H, et al. Effects of polymer aging on sorption of 2, 2', 4, 4'-tetrabromodiphenyl ether by polystyrene microplastics [J]. Chemosphere, 2020, 253: 126706. doi: 10.1016/j.chemosphere.2020.126706 [90] 徐鹏程, 郭健, 马东, 等. 新制和老化微塑料对多溴联苯醚的吸附 [J]. 环境科学, 2020, 41(3): 1329-1337. XU P C, GUO J, MA D, et al. Sorption of polybrominated diphenyl ethers by virgin and aged microplastics [J]. Environmental Science, 2020, 41(3): 1329-1337(in Chinese).
[91] ZHAN Z W, WANG J D, PENG J P, et al. Sorption of 3, 3', 4, 4'-tetrachlorobiphenyl by microplastics: A case study of polypropylene [J]. Marine Pollution Bulletin, 2016, 110(1): 559-563. doi: 10.1016/j.marpolbul.2016.05.036 [92] QIU Y, ZHENG M G, WANG L, et al. Sorption of polyhalogenated carbazoles (PHCs) to microplastics [J]. Marine Pollution Bulletin, 2019, 146: 718-728. doi: 10.1016/j.marpolbul.2019.07.034 [93] VOCKENBERG T, WICHARD T, UEBERSCHAAR N, et al. The sorption behaviour of amine micropollutants on polyethylene microplastics - impact of aging and interactions with green seaweed [J]. Environmental Science. Processes & Impacts, 2020, 22(8): 1678-1687. [94] ZHANG X J, ZHENG M G, WANG L, et al. Sorption of three synthetic musks by microplastics [J]. Marine Pollution Bulletin, 2018, 126: 606-609. doi: 10.1016/j.marpolbul.2017.09.025 [95] 杨杰, 仓龙, 邱炜, 等. 不同土壤环境因素对微塑料吸附四环素的影响 [J]. 农业环境科学学报, 2019, 38(11): 2503-2510. doi: 10.11654/jaes.2019-0490 YANG J, CANG L, QIU W, et al. Effects of different soil environmental factors on tetracycline adsorption of microplastics [J]. Journal of Agro-Environment Science, 2019, 38(11): 2503-2510(in Chinese). doi: 10.11654/jaes.2019-0490
[96] LI Y D, LI M, LI Z, et al. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic [J]. Chemosphere, 2019, 231: 308-314. doi: 10.1016/j.chemosphere.2019.05.116 [97] ABDURAHMAN A, CUI K Y, WU J, et al. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis [J]. Ecotoxicology and Environmental Safety, 2020, 198: 110658. doi: 10.1016/j.ecoenv.2020.110658 [98] WU C X, ZHANG K, HUANG X L, et al. Sorption of pharmaceuticals and personal care products to polyethylene debris [J]. Environmental Science and Pollution Research, 2016, 23(9): 8819-8826. doi: 10.1007/s11356-016-6121-7 [99] CHEN W, OUYANG Z Y, QIAN C, et al. Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight [J]. Environmental Pollution, 2018, 233: 1-7. doi: 10.1016/j.envpol.2017.10.027 [100] SEIDENSTICKER S, ZARFL C, CIRPKA O A, et al. Shift in mass transfer of wastewater contaminants from microplastics in the presence of dissolved substances [J]. Environmental Science & Technology, 2017, 51(21): 12254-12263. [101] GUO X T, HU G L, FAN X Y, et al. Sorption properties of cadmium on microplastics: The common practice experiment and A two-dimensional correlation spectroscopic study [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110118. doi: 10.1016/j.ecoenv.2019.110118 [102] WANG F Y, YANG W W, CHENG P, et al. Adsorption characteristics of cadmium onto microplastics from aqueous solutions [J]. Chemosphere, 2019, 235: 1073-1080. doi: 10.1016/j.chemosphere.2019.06.196 [103] WU G, MA J, LI S, et al. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions [J]. Journal of Colloid and Interface Science, 2018, 528: 360-371. doi: 10.1016/j.jcis.2018.05.105 [104] HU J Q, YANG S Z, GUO L, et al. Microscopic investigation on the adsorption of lubrication oil on microplastics [J]. Journal of Molecular Liquids, 2017, 227: 351-355. doi: 10.1016/j.molliq.2016.12.043 [105] WANG W F, WANG J. Comparative evaluation of sorption kinetics and isotherms of Pyrene onto microplastics [J]. Chemosphere, 2018, 193: 567-573. doi: 10.1016/j.chemosphere.2017.11.078 [106] COSTA S T, RUDNITSKAYA A, VALE C, et al. Sorption of okadaic acid lipophilic toxin onto plastics in seawater [J]. Marine Pollution Bulletin, 2020, 157: 111322. doi: 10.1016/j.marpolbul.2020.111322 [107] GUO X, WANG J. A general kinetic model for adsorption: Theoretical analysis and modeling [J]. Journal of Molecular Liquids, 2019, 288: 111100. doi: 10.1016/j.molliq.2019.111100 [108] LIU X W, ZHENG M G, WANG L, et al. Sorption behaviors of tris-(2, 3-dibromopropyl) isocyanurate and hexabromocyclododecanes on polypropylene microplastics [J]. Marine Pollution Bulletin, 2018, 135: 581-586. doi: 10.1016/j.marpolbul.2018.07.061 [109] GUO X, LIU Y, WANG J. Equilibrium, kinetics and molecular dynamic modeling of Sr2+ sorption onto microplastics [J]. Journal of Hazardous Materials, 2020, 400: 123324. doi: 10.1016/j.jhazmat.2020.123324 [110] WEI X, LI M, WANG Y, et al. Developing predictive models for carrying ability of micro-plastics towards organic pollutants [J]. Molecules, 2019, 24(9): 13. [111] UBER T H, HÜFFER T, PLANITZ S, et al. Characterization of sorption properties of high-density polyethylene using the poly-parameter linearfree-energy relationships [J]. Environmental Pollution, 2019, 248: 312-319. doi: 10.1016/j.envpol.2019.02.024 [112] LI M, YU H, WANG Y, et al. QSPR models for predicting the adsorption capacity for microplastics of polyethylene, polypropylene and polystyrene [J]. Scientific Reports, 2020, 10(1): 14597. doi: 10.1038/s41598-020-71390-3 [113] WANG Y, CHEN J W, WEI X X, et al. Unveiling adsorption mechanisms of organic pollutants onto carbon nanomaterials by density functional theory computations and linear free energy relationship modeling [J]. Environmental Science & Technology, 2017, 51(20): 11820-11828. [114] WEI X X, YUAN Q, SERGE B, et al. In silico investigation of gas/particle partitioning equilibrium of polybrominated diphenyl ethers (PBDEs) [J]. Chemosphere, 2017, 188: 110-118. doi: 10.1016/j.chemosphere.2017.08.146 [115] BAKIRE S, YANG X Y, MA G C, et al. Developing predictive models for toxicity of organic chemicals to green algae based on mode of action [J]. Chemosphere, 2018, 190: 463-470. doi: 10.1016/j.chemosphere.2017.10.028 [116] GONG W W, JIANG M Y, HAN P, et al. Comparative analysis on the sorption kinetics and isotherms of fipronil on nondegradable and biodegradable microplastics [J]. Environmental Pollution, 2019, 254(Pt A): 112927. [117] 陈守益, 郭学涛, 庞敬文. 微塑料对泰乐菌素的吸附动力学与热力学 [J]. 中国环境科学, 2018, 38(5): 1905-1912. doi: 10.3969/j.issn.1000-6923.2018.05.036 CHEN S Y, GUO X T, PANG J W. Sorption kinetics and thermodynamics study of tylosin by microplastics [J]. China Environmental Science, 2018, 38(5): 1905-1912(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.05.036
[118] FENG L J, SHI Y, LI X Y, et al. Behavior of tetracycline and polystyrene nanoparticles in estuaries and their joint toxicity on marine microalgae Skeletonema costatum [J]. Environmental Pollution, 2020, 263(Pt A): 114453. [119] CHEN X, GU X, BAO L, et al. Comparison of adsorption and desorption of triclosan between microplastics and soil particles [J]. Chemosphere, 2021, 263: 127947. doi: 10.1016/j.chemosphere.2020.127947 [120] GODOY V, MARTíN-LARA M A, CALERO M, et al. The relevance of interaction of chemicals/pollutants and microplastic samples as route for transporting contaminants [J]. Process Safety and Environmental Protection, 2020, 138: 312-323. doi: 10.1016/j.psep.2020.03.033