基于蜡烛灰构建的电-Fenton体系中H2O2的生成与磺胺甲恶唑的降解

王悦, 严雅婷, 张华宇, 任月萍, 李秀芬, 李健. 基于蜡烛灰构建的电-Fenton体系中H2O2的生成与磺胺甲恶唑的降解[J]. 环境化学, 2021, (4): 1206-1215. doi: 10.7524/j.issn.0254-6108.2019112802
引用本文: 王悦, 严雅婷, 张华宇, 任月萍, 李秀芬, 李健. 基于蜡烛灰构建的电-Fenton体系中H2O2的生成与磺胺甲恶唑的降解[J]. 环境化学, 2021, (4): 1206-1215. doi: 10.7524/j.issn.0254-6108.2019112802
WANG Yue, YAN Yating, ZHANG Huayu, REN Yueping, LI Xiufen, LI Jian. H2O2 in-situ production and sulfamethoxazole degradation in the electro-Fenton system constructed with candle soots[J]. Environmental Chemistry, 2021, (4): 1206-1215. doi: 10.7524/j.issn.0254-6108.2019112802
Citation: WANG Yue, YAN Yating, ZHANG Huayu, REN Yueping, LI Xiufen, LI Jian. H2O2 in-situ production and sulfamethoxazole degradation in the electro-Fenton system constructed with candle soots[J]. Environmental Chemistry, 2021, (4): 1206-1215. doi: 10.7524/j.issn.0254-6108.2019112802

基于蜡烛灰构建的电-Fenton体系中H2O2的生成与磺胺甲恶唑的降解

    通讯作者: 任月萍, E-mail: ypren@jiangnan.edu.cn
  • 基金项目:

    江苏省自然科学基金(BK20171141).

H2O2 in-situ production and sulfamethoxazole degradation in the electro-Fenton system constructed with candle soots

    Corresponding author: REN Yueping, ypren@jiangnan.edu.cn
  • Fund Project: Supported by the Natural Science Foundation of Jiangsu Province, China (BK20171141).
  • 摘要: 本文构建了基于蜡烛灰(CS)的电-Fenton体系,研究了体系中H2O2的原位生成和磺胺甲恶唑(SMX)的降解.研究发现,在蜡烛火焰中部收集得到的CS为40-50 nm的疏水性球状颗粒.经过热处理后,样品的比表面积由61.792 m2·g-1(CS)升高到67.098 m2·g-1(CS-200)、102.54 m2·g-1(CS-400)、322.85 m2·g-1(CS-600)和680.69 m2·g-1(CS-800),为氧气还原反应(ORR)提供了更多的反应活性位点.介孔体积由0.1463 cm3·g-1(CS)升高到0.1723 cm3·g-1(CS-200)、0.1740 cm3·g-1(CS-400)、0.2686 cm3·g-1(CS-600)、和0.3570 cm3·g-1(CS-800).除CS-200外,热处理增加了样品表面含氧官能团比例,显著提高了样品的亲水性.旋转圆盘电极(RDE)实验证明,CS,CS-200和CS-400表面ORR为2e-途径,而CS-600和CS-800表面氧气还原涉及4e-途径,并且与其他样品相比,CS-400显示出最高的2e- ORR催化活性,这与其表面存在较高比例的COOH基团(23.15%)和较大的介孔比例(50.39%)有关.在以CS-400空气阴极搭建的电-Fenton体系中,H2O2浓度在60 min内可以积累到1277 mg·L-1,产量可达5.11 mg·h-1·cm-2.连续5次SMX降解实验中,60 min内SMX的降解率均保持在100%.因此,基于CS构建的电-Fenton体系显示出很高的SMX降解能力和运行稳定性,具有很大的实际应用价值.
  • 加载中
  • [1] 陈姗, 许凡, 张玮, 等.磺胺类抗生素污染现状及其环境行为的研究进展[J].环境化学, 2019, 38(7):1557-1569.

    CHEN S, XU F, ZHANG W, et al. Research progress in pollution situation and environmental behavior of Sulfonamides[J].Environmental Chemistry,2019,38(7):1557-1569(in Chinese).

    [2] LUO Y, XU L, RYSZ M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833.
    [3] JIANG L, HU X, YIN D, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828.
    [4] 洪蕾洁, 石璐, 张亚雷, 等. 固相萃取-高效液相色谱法同时测定水体中的10种磺胺类抗生素[J].环境科学,2012,33(2):652-657.

    HONG L J, SHI L, ZHANG Y L, et al.Simultaneous determination of 10 sulfonamide antibiotics in water by solid phase extraction and high performance liquid chromatograph[J]. Environmental Science,2012,33(2):652-657(in Chinese).

    [5] VALIM R B, REIS R M, CASTRO P S, et al. Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support[J]. Carbon, 2013, 61:236-244.
    [6] VISWANATHAN V, HANSEN H A, ROSSMEISL J, et al. Unifying the 2e(-) and 4e(-) reduction of oxygen on metal surfaces[J]. Journal of Physical Chemistry Letters, 2012, 3(20):2948-2951.
    [7] JIRKOVSKY J S, PANAS I, AHLBERG E, et al. Single atom Hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J]. Journal of the American Chemical Society, 2011, 133(48):19432-19441.
    [8] PIZZUTILO E, KASIAN O, CHOI C H, et al. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles:From fundamentals to continuous production[J]. Chemical Physics Letters, 2017, 683:436-442.
    [9] FREAKLEY S J, HE Q, HARRHY J H, et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity[J]. Science, 2016, 351(6276):965-968.
    [10] IGLESIAS D, GIULIANI A, MELCHIONNA M, et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2[J]. Chem, 2018, 4(1):106-123.
    [11] GUO D, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271):361-365.
    [12] KHATAEE A R, SAFARPOUR M, ZAREI M, et al. Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air:Investigation of operational parameters[J]. Journal of Electroanalytical Chemistry, 2011, 659(1):63-68.
    [13] HAN L, SUN Y, LI S, et al. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene[J]. ACS Catalysis, 2019, 9(2):1283-1288.
    [14] PARK J, NABAE Y, HAYAKAWA T, et al. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon[J]. Acs Catalysis, 2014, 4(10):3749-3754.
    [15] SUN Y, SINEV I, JU W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catalysis, 2018, 8(4):2844-2856.
    [16] YANG Y, HE F, SHEN Y, et al. A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide[J]. Chemical Communications, 2017, 53(72):9994-9997.
    [17] ZHAO H, SHEN X, CHEN Y, et al. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J]. Chemical Communications, 2019, 55(44):6173-6176.
    [18] KAKUNURI M, SHARMA C S. Candle soot derived fractal-like carbon nanoparticles network as high-rate lithium ion battery anode material[J]. Electrochimica Acta, 2015, 180:353-359.
    [19] KHALAKHAN I, FIALA R, LAVKOVA J, et al. Candle soot as efficient support for proton exchange membrane fuel cell catalyst[J]. Fuel Cells, 2016, 16(5):652-655.
    [20] SINGH S, BAIRAGI P K, VERMA N. Candle soot-derived carbon nanoparticles:An inexpensive and efficient electrode for microbial fuel cells[J]. Electrochimica Acta, 2018, 264:119-127.
    [21] LIANG C J, LIAO J D, LI A J, et al. Relationship between wettabilities and chemical compositions of candle soots[J]. Fuel, 2014, 128:422-427.
    [22] ZHANG Z, HAO J, YANG W, et al. Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction[J]. Nanoscale, 2015, 7(10):4400-4405.
    [23] ZHOU M, LI Q, ZHONG S, et al. Facile large scale fabrication of magnetic carbon nano-onions for efficient removal of bisphenol A[J]. Materials Chemistry and Physics, 2017, 198:186-192.
    [24] XIAO L, ZENG W, LIAO G, et al. Thermally and chemically stable candle soot superhydrophobic-surface with excellent self-cleaning properties in air and qil[J]. Acs Applied Nano Materials, 2018, 1(3):1204-1211.
    [25] CAO H, FU J, LIU Y, et al. Facile design of superhydrophobic and superoleophilic copper mesh assisted by candle soot for oil water separation[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2018, 537:294-302.
    [26] YUAN S, STROBBE D, KRUTH J-P, et al. Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(48):25401-25409.
    [27] PANKAJ A, TEWARI K, SINGH S, et al. Waste candle soot derived nitrogen doped carbon dots based fluorescent sensor probe:An efficient and inexpensive route to determine Hg(II) and Fe (III) from water[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):5561-5569.
    [28] SUN W, ZHANG X, JIA H R, et al. Water-dispersible candle soot-derived carbon nano-onion clusters for imaging-guided photothermal cancer therapy[J]. Small, 2019, 15(11):1804575.
    [29] ROCHE I, SCOTT K. Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (ORR) in neutral solution[J]. Journal of Applied Electrochemistry, 2009, 39(2):197-204.
    [30] DONG H, YU H, WANG X, et al. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells[J]. Water Research, 2012, 46(17):5777-5787.
    [31] LIANG L, ZHOU M, LU X, et al. High-efficiency electrogeneration of hydrogen peroxide from oxygen reduction by carbon xerogels derived from glucose[J]. Electrochimica Acta, 2019, 320:134569.
    [32] CHEN S, CHEN Z, SIAHROSTAMI S, et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1):311-317.
    [33] ZHU J, XIAO X, ZHENG K, et al. KOH-treated reduced graphene oxide:100% selectivity for H2O2 electroproduction[J]. Carbon, 2019, 153:6-11.
    [34] MIAO J, ZHU H, TANG Y, et al. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water[J]. Chemical Engineering Journal, 2014, 250:312-318.
    [35] KIM M, OH I, KIM J. Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode[J]. Physical Chemistry Chemical Physics, 2015, 17(25):16367-16374.
    [36] YU F, TAO L, CAO T. High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen-doped porous carbon carbonized by zeolitic imidazolate framework-8(ZIF-8) nanocrystals[J]. Environmental Pollution, 2019, 255(Pt 2):113119.
    [37] WANG C T, HU J L, CHOU W L, et al. Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode[J]. Journal of Hazardous Materials, 2008, 152(2):601-606.
    [38] REIS R M, BEATI A A G F, ROCHA R S, et al. Use of gas diffusion electrode for the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor[J]. Industrial & Engineering Chemistry Research, 2012, 51(2):649-654.
    [39] AN J, LI N, ZHAO Q, et al. Highly efficient electro-generation of H2O2 by adjusting liquid-gas solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction[J]. Water Research, 2019, 164,114933.
    [40] LU X, ZHOU M, LI Y, et al. Improving the yield of hydrogen peroxide on gas diffusion electrode modified with tert-butyl-anthraquinone on different carbon support[J]. Electrochimica Acta, 2019, 320,134552.
    [41] LIU H, WANG C, LI X, et al. A novel electro-Fenton process for water treatment:Reaction-controlled pH adjustment and performance assessment[J]. Environmental Science & Technology, 2007, 41(8):2937-2942.
    [42] QIANG Z M, CHANG J H, HUANG C P. Electrochemical regeneration of Fe2+ in Fenton oxidation processes[J]. Water Research, 2003, 37(6):1308-1319.
  • 加载中
计量
  • 文章访问数:  1337
  • HTML全文浏览数:  1337
  • PDF下载数:  62
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-28
王悦, 严雅婷, 张华宇, 任月萍, 李秀芬, 李健. 基于蜡烛灰构建的电-Fenton体系中H2O2的生成与磺胺甲恶唑的降解[J]. 环境化学, 2021, (4): 1206-1215. doi: 10.7524/j.issn.0254-6108.2019112802
引用本文: 王悦, 严雅婷, 张华宇, 任月萍, 李秀芬, 李健. 基于蜡烛灰构建的电-Fenton体系中H2O2的生成与磺胺甲恶唑的降解[J]. 环境化学, 2021, (4): 1206-1215. doi: 10.7524/j.issn.0254-6108.2019112802
WANG Yue, YAN Yating, ZHANG Huayu, REN Yueping, LI Xiufen, LI Jian. H2O2 in-situ production and sulfamethoxazole degradation in the electro-Fenton system constructed with candle soots[J]. Environmental Chemistry, 2021, (4): 1206-1215. doi: 10.7524/j.issn.0254-6108.2019112802
Citation: WANG Yue, YAN Yating, ZHANG Huayu, REN Yueping, LI Xiufen, LI Jian. H2O2 in-situ production and sulfamethoxazole degradation in the electro-Fenton system constructed with candle soots[J]. Environmental Chemistry, 2021, (4): 1206-1215. doi: 10.7524/j.issn.0254-6108.2019112802

基于蜡烛灰构建的电-Fenton体系中H2O2的生成与磺胺甲恶唑的降解

    通讯作者: 任月萍, E-mail: ypren@jiangnan.edu.cn
  • 1. 江南大学环境与土木工程学院, 无锡, 214122;
  • 2. 江苏省厌氧生物技术重点实验室, 无锡, 214122;
  • 3. 江苏省水处理技术与材料协同创新中心, 苏州, 215000
基金项目:

江苏省自然科学基金(BK20171141).

摘要: 本文构建了基于蜡烛灰(CS)的电-Fenton体系,研究了体系中H2O2的原位生成和磺胺甲恶唑(SMX)的降解.研究发现,在蜡烛火焰中部收集得到的CS为40-50 nm的疏水性球状颗粒.经过热处理后,样品的比表面积由61.792 m2·g-1(CS)升高到67.098 m2·g-1(CS-200)、102.54 m2·g-1(CS-400)、322.85 m2·g-1(CS-600)和680.69 m2·g-1(CS-800),为氧气还原反应(ORR)提供了更多的反应活性位点.介孔体积由0.1463 cm3·g-1(CS)升高到0.1723 cm3·g-1(CS-200)、0.1740 cm3·g-1(CS-400)、0.2686 cm3·g-1(CS-600)、和0.3570 cm3·g-1(CS-800).除CS-200外,热处理增加了样品表面含氧官能团比例,显著提高了样品的亲水性.旋转圆盘电极(RDE)实验证明,CS,CS-200和CS-400表面ORR为2e-途径,而CS-600和CS-800表面氧气还原涉及4e-途径,并且与其他样品相比,CS-400显示出最高的2e- ORR催化活性,这与其表面存在较高比例的COOH基团(23.15%)和较大的介孔比例(50.39%)有关.在以CS-400空气阴极搭建的电-Fenton体系中,H2O2浓度在60 min内可以积累到1277 mg·L-1,产量可达5.11 mg·h-1·cm-2.连续5次SMX降解实验中,60 min内SMX的降解率均保持在100%.因此,基于CS构建的电-Fenton体系显示出很高的SMX降解能力和运行稳定性,具有很大的实际应用价值.

English Abstract

参考文献 (42)

返回顶部

目录

/

返回文章
返回