短程反硝化-厌氧氨氧化耦合脱氮工艺影响因素与调控研究进展

王建辉, 游庆国, 申渝, 陈猷鹏. 短程反硝化-厌氧氨氧化耦合脱氮工艺影响因素与调控研究进展[J]. 环境化学, 2021, (4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302
引用本文: 王建辉, 游庆国, 申渝, 陈猷鹏. 短程反硝化-厌氧氨氧化耦合脱氮工艺影响因素与调控研究进展[J]. 环境化学, 2021, (4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302
WANG Jianhui, YOU Qingguo, SHEN Yu, CHEN Youpeng. Research advances on influence factors and regulation of Partial denitrification and Anammox coupling denitrification process[J]. Environmental Chemistry, 2021, (4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302
Citation: WANG Jianhui, YOU Qingguo, SHEN Yu, CHEN Youpeng. Research advances on influence factors and regulation of Partial denitrification and Anammox coupling denitrification process[J]. Environmental Chemistry, 2021, (4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302

短程反硝化-厌氧氨氧化耦合脱氮工艺影响因素与调控研究进展

    通讯作者: 申渝, E-mail: shenyu@ctbu.edu.cn
  • 基金项目:

    重庆市教委科研项目(KJQN201800831),国家自然科学基金(21876016),重庆工商大学工业污染控制新技术重庆市高校创新群体(CXQT19023)和科研项目(1853061),博士后科学基金(2019M653825XB,cstc2019jcyj-bshX0061,2019SWZC-bsh001))资助.

Research advances on influence factors and regulation of Partial denitrification and Anammox coupling denitrification process

    Corresponding author: SHEN Yu, shenyu@ctbu.edu.cn
  • Fund Project: Supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJQN201800831), National Natural Science Foundation of China(21876016), Innovation Group of New Technologies for Industrial Pollution Control of Chongqing Education Commission (CXQT19023), Research Project of Chongqing Technology and Business University (1853061), and Postdoctoral Science Foundation Grant (2019M653825XB, cstc2019jcyj-bshX0061,2019SWZC-bsh001).
  • 摘要: 含氮废水大量排放会危害环境安全,影响社会经济发展.短程反硝化-厌氧氨氧化(PD-Anammox,简称PD/A)耦合工艺作为一种新型耦合生物脱氮工艺,与传统脱氮工艺相比,具有能耗低、产泥少、温室气体排放少和节约曝气量等优点,适于处理含氮甚至高含氮废水,是近年来脱氮工艺研究领域的热点,有着广阔的应用前景.但该耦合工艺对环境要求较为严苛,其效能受到基质底物(如有机物和"三氮")、氧化还原性(DO和ORP)、酸碱度、污泥接种和驯化等因素影响,导致其工艺优化运行和工业化应用难度较大.通过对PD/A耦合工艺方面的系列研究和应用进行对比发现,操作条件、污泥种群结构及运行方式等因素之间的差异,是影响工艺效能的重要原因.基于影响特征和机制将常见影响因素归纳为几个类别:底物负荷、氧化还原特性、酸碱度、温度、污泥形态与驯化及其它因素,并总结了每种影响因素的特点、抑制机制和调控范围,给出了其对应的优化运行调控方案,有助于提高该耦合工艺的高效性和稳定性,为其启动和运行调控提供了技术支持,并为该工艺影响因素、代谢机理与调控方法等方面的研究提供了参考.
  • 加载中
  • [1] LIU S, XIE Z, ZENG Y, et al. Effects of anthropogenic nitrogen discharge on dissolved inorganic nitrogen transport in global rivers[J]. Global Change Biol, 2019, 25(4):1493-1513.
    [2] WANG Z, ZHANG L, ZHANG F, et al. A continuous-flow combined process based on partial nitrification-Anammox and partial denitrification-Anammox (PN/A+ PD/A) for enhanced nitrogen removal from mature landfill leachate[J]. Bioresource Technol, 2019, 297(12):24-38.
    [3] KARTAL B, KUENEN J G, LOOSDRECHT, et al. Sewage treatment with anammox[J]. Science, 2010, 328(5979):702-703.
    [4] DU R, CAO S B, LI X, et al. Efficient partial-denitrification/anammox (PD/A) process through gas-mixing strategy:System evaluation and microbial analysis[J]. Bioresource Technol, 2020, 300(12):26-41.
    [5] CAO S B, DU R, PENG Y Z, et al. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal, 2019, 362(22):107-115.
    [6] MA B, QIAN W, YUAN C, et al. Achieving mainstream nitrogen removal through coupling anammox with denitratation[J]. Environmental Science Technology, 2017, 51(15):8405-8413.
    [7] DU R, PENG Y, JI J, et al. Partial denitrification providing nitrite:Opportunities of extending application for anammox[J]. Environment International, 2019, 131:105001.
    [8] HUANG T, LIU W, ZHANG Y, et al. A stable simultaneous anammox, denitrifying anaerobic methane oxidation and denitrification process in integrated vertical constructed wetlands for slightly polluted wastewater[J]. Environmental Pollution, 2020, 262:114363.
    [9] DU R, CAO S, LI B, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108:46-56.
    [10] LV Y, PAN J, HUO T, et al. Enhanced microbial metabolism in one stage partial nitritation-anammox system treating low strength wastewater by novel composite carrier[J]. Water Research,2019, 163:114872.
    [11] ZHANG Z, ZHANG Y, CHEN Y. Recent advances in partial denitrification in biological nitrogen removal:From enrichment to application[J]. Bioresource Technology, 2019, 298:122444.
    [12] QIAN W, MA B, LI X, et al. Long-term effect of pH on denitrification:High pH benefits achieving partial-denitrification[J]. Bioresource Technol, 2019, 278(31):444-449.
    [13] CUI B, LIU X, YANG Q, et al. Achieving partial denitrification through control of biofilm structure during biofilm growth in denitrifying biofilter[J]. Bioresource Technol, 2017, 238(22):223-231.
    [14] DU R, PENG Y, CAO S, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology & Biotechnology, 2016, 100(4):2011-2021.
    [15] STROUS M, PELLETIER E, MANGENOT S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature, 2006, 440(7085):790-794.
    [16] KARTAL B, DE A N M, MAALCKE W J, et al. How to make a living from anaerobic ammonium oxidation[J]. FEMS microbiology reviews, 2012, 37(3):428-461.
    [17] KUENEN J G. Anammox and beyond[J]. Environ Microbiol, 2020, 22(2):525-536.
    [18] MA B, WANG S, CAO S B, et al. Biological nitrogen removal from sewage via anammox:Recent advances[J]. Bioresource Technol, 2016, 200(294):981-990.
    [19] KRIEG N R, STALEY J T, BROWN D R, et al. Bergey's Manual Of Systematic Bacteriology (Vol 4)[M]. New York:Springer, 2010:918-922.
    [20] LU H, CHANDRAN K, STENSEL D, et al. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64:237-254.
    [21] SCHMID M, TWACHTMANN U, KLEIN M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic & Applied Microbiology, 2000, 23(1):93-106.
    [22] KARTAL B, RATTRAY J, NIFTRIK L A V, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic & Applied Microbiology, 2007, 30(1):39-49.
    [23] HSU S C, LAI Y C, HSIEH P H, et al. Successful enrichment of rarely found candidatus anammoxoglobus propionicus from leachate sludge[J]. Journal of Microbiology & Biotechnology, 2014, 24(7):879-887.
    [24] LIU S, YANG F, ZHENG G, et al. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal[J]. Bioresource Technology, 2008, 99(15):6817-6825.
    [25] KHRAMENKOV S V, KOZLOV M N, KEVBRINA M V, et al. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge[J]. Microbiology, 2013, 82(5):628-636.
    [26] STROUS M, FUERST J A, KRAMER E H M, et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400(6743):446-449.
    [27] ARAUJO J C, CAMPOS A C, CORREA M M, et al. Anammox bacteria enrichment and characterization from municipal activated sludge[J]. Water ence & Technology, 2011, 64(7):1428-1434.
    [28] YAMAGISHI T, TAKEUCHI M, WAKIYA Y, et al. Distribution and characterization of anammox in a swine wastewater activated sludge facility[J]. Water Science & Technology, 2013, 67(10):2330-2336.
    [29] BORAN K, LAURA V N, JAYNE R, et al. Candidatus ‘Brocadia fulgida’:An autofluorescent anaerobic ammonium oxidizing bacterium[J]. Fems Microbiology Ecology, 2008, 63(1):46-55.
    [30] KUENEN J G, JETTEN M S M. Extraordinary anaerobic ammonium-oxidizing bacteria[J]. Asm News, 2001, 67(9):456-463.
    [31] NARITA Y, ZHANG L, KIMURA Z I, et al. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sapporoensis’[J]. Systematic & Applied Microbiology, 2017, 40(7):448-457.
    [32] OSHIKI M, SHIMOKAWA M, FUJII N, et al. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’[J]. Microbiology, 2011, 157(6):1706-1713.
    [33] DANG H, ZHOU H, ZHANG Z, et al. Molecular detection of candidatus scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China[J]. Plos One, 2013, 8(4):1-16.
    [34] ALI M, OSHIKI M, AWATA T. Physiological characterization of anaerobic ammonium oxidizing bacterium "candidatus jettenia caeni"[J]. Environmental Microbiology, 2014, 17(6):2172-2189.
    [35] NIKOLAEV Y A, KOZLOV M N, KEVBRINA M V, et al. Candidatus "Jettenia moscovienalis" sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation[J]. Microbiology, 2015, 84(2):256-262.
    [36] SCHMID M, SCHMITZ-ESSER S, JETTEN M, et al. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria:Implications for phylogeny and in situ detection[J]. Environmental Microbiology, 2001, 3(7):450-459.
    [37] ZHANG L, ZHENG P, TANG C J, et al. Review:Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters[J]. Journal of Zhejiang University (Science B:An International Biomedicine & Biotechnology Journal), 2008, 9(5):68-78.
    [38] WOEBKEN D, LAM P, KUYPERS M M M, et al. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones[J]. Environmental Microbiology, 2008, 10(11):3106-3119.
    [39] DAAN R SPETH, ILIAS L, YONG W, et al. Draft genome of scalindua rubra, obtained from the interface above the discovery deep brine in the red sea, sheds light on potential salt adaptation strategies in anammox bacteria[J]. Microbial Ecology, 2017, 74(1):1-5.
    [40] SHEHZAD A, QISMAT S, IBRAR K, et al. Molecular detection of candidatus scalindua flavia, study of anammox bacterial community structure, composition in the sediments of the East China Sea and the Yellow Sea[J]. Indian Journal of Geo-Marine Sciences, 2017, 46(1):33-47.
    [41] VOSSENBERG J V D, WOEBKEN D, MAALCKE W J, et al. The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium[J]. Environmental Microbiology, 2013, 15(5):1275-1289.
    [42] FUCHSMAN C A, STALEY J T, OAKLEY B B, et al. Free-living and aggregate-associated Planctomycetes in the Black Sea[J]. FEMS Microbiology Ecology, 2012, 80(2):1-15
    [43] LI H, CHEN S, MU B Z, et al. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs[J]. Microbial Ecology, 2010, 60(4), 771-783.
    [44] KUYPERS M M M, SLIEKERS A O, LAVIK G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(6932):608-611.
    [45] LI M, HONGY, CAO H, et al. Diversity, abundance, and distribution of NO-forming nitrite reductase-encoding genes in deep-sea subsurface sediments of the South China Sea[J]. Geobiology, 2013, 11(2):170-179.
    [46] JI J, PENG Y Z, WANG B, et al. Synergistic Partial-denitrification, anammox, and in-situ fermentation (SPDAF) process for advanced nitrogen removal from domestic and nitrate-containing wastewater[J]. Environmental Science Technology, 2020, 54(6):3702-3713.
    [47] ZHENG Z, HUANG S, BIAN W, et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration[J]. Bioresource Technol, 2019, 283(14):213-220.
    [48] WANG D, LI T, HUANG K, et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment, 2019, 655(14):1355-1363.
    [49] LI J, PENG Y, ZHANG L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomics analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research, 2019, 160:178-187.
    [50] CHAMCHOI N, NITISORAVUT S, SCHMIDT J E. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification[J]. Bioresource Technol, 2008, 99(9):3331-3336.
    [51] WANG X, ZHAO J, YU D, et al. Stable nitrite accumulation and phosphorous removal from nitrate and municipal wastewaters in a combined process of endogenous partial denitrification and denitrifying phosphorus removal (EPDPR)[J]. Chemical Engineering Journal, 2019, 355(15):560-571.
    [52] JIA, MING S, CASTRO-BARROS, et al. Effect of organic matter on the performance and N2O emission of a granular sludge anammox reactor[J]. Environmental Science:Water Research & Technology, 2018, 4(7):1035-1046.
    [53] ZHANG D, VAHALA R, WANG Y, et al. Microbes in biological processes for municipal landfill leachate treatment:Community, function and interaction[J]. Int Biodeter Biodegr, 2016, 113(26):88-96.
    [54] HUYNH T V, NGUYEN P D, PHAN T N, et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater[J]. Int Biodeter Biodegr, 2019, 136(6):15-23.
    [55] LACKNER S, TERADA A, SMETS B F. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms:results of a modeling study[J]. Water Research, 2008, 42(4):1102-1112.
    [56] OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environ Microbiol, 2016, 18(9):2784-2796.
    [57] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process:A review[J]. Chemical Engineering Journal, 2012, 197(54):67-79.
    [58] FENG Y, ZHAO Y, GUO Y, et al. Microbial transcript and metabolome analysis uncover discrepant metabolic pathways in autotrophic and mixotrophic anammox consortia[J]. Water Research, 2018, 128(25):402-411.
    [59] DU R, CAO S B, PENG Y Z, et al. Combined partial denitrification (PD)-Anammox:A method for high nitrate wastewater treatment[J]. Environment International, 2019, 126(14):707-716.
    [60] JI J T, PENG Y Z, LI X Y, et al. A novel partial nitrification-synchronous anammox and endogenous partial denitrification (PN-SAEPD) process for advanced nitrogen removal from municipal wastewater at ambient temperatures[J]. Water Research, 2020, 175(May15):115690.1-115690.11.
    [61] PENG B. Evaluating the impact of different carbon source and COD/NO3-N ratio on coupling partial denitrification and anammox[D]. Washington:University of Maryland, College Park, 2017.
    [62] GVVEN D, DAPENA A, KARTAL B, et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria[J]. Appl Environ Microb, 2005, 71(2):1066-1071.
    [63] LYU L, ZHANG K, LI Z, et al. Inhibition of anammox activity by phenol:Suppression effect, community analysis and mechanism simulation[J]. Int Biodeter Biodegr, 2019, 141(5):30-38.
    [64] DING S, WU J, ZHANG M, et al. Acute toxicity assessment of ANAMMOX substrates and antibiotics by luminescent bacteria test[J]. Chemosphere, 2015, 140(24):174-183.
    [65] ZHANG X, CHEN Z, MA Y, et al. Impacts of erythromycin antibiotic on Anammox process:Performance and microbial community structure[J]. Biochem Eng J, 2019, 143(2):1-8.
    [66] HAUCK M, MAALCKE-LUESKEN F A, JETTEN M S M, et al. Removing nitrogen from wastewater with side stream anammox:What are the trade-offs between environmental impacts?[J]. Resources, Conservation and Recycling, 2016, 107(20):212-219.
    [67] DING S, BAO P, WANG B, et al. Long-term stable simultaneous partial nitrification, anammox and denitrification (SNAD) process treating real domestic sewage using suspended activated sludge[J]. Chemical Engineering Journal, 2018, 339(26):180-188.
    [68] LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes:A review[J]. Environment International, 2019, 123(29):10-19.
    [69] YANG W, HE S, HAN M, et al. Nitrogen removal performance and microbial community structure in the start-up and substrate inhibition stages of an anammox reactor[J]. J Biosci Bioeng, 2018, 126(1):88-95.
    [70] CAO S B, WANG S Y, WU C C, et al. Shock effect of organic matters on anaerobic ammonia oxidation system[J]. China Environmental Science, 2013, 33(12):2164-2169.
    [71] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S. Inhibition of nitrification by ammonia and nitrous acid[J]. Water pollution control Federation, 1976, 48(5):835-852.
    [72] KANG D, LIN Q, XU D, et al. Color characterization of anammox granular sludge:Chromogenic substance, microbial succession and state indication[J]. Science of the Total Environment, 2018, 642(22):1320-1327.
    [73] MIAO L, YANG G, TAO T, et al. Recent advances in nitrogen removal from landfill leachate using biological treatments-A review[J]. J Environ Manage, 2019, 235(32):178-185.
    [74] WEI W, ZHOU X, WANG D, et al. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production[J]. Water Research, 2017, 118(39):12-19.
    [75] KIMURA Y, ISAKA K, KAZAMA F, et al. Effects of nitrite inhibition on anaerobic ammonium oxidation[J]. Appl Microbiol Biot, 2010, 86(1):359-365.
    [76] PUYOL D, CARVAJAL-ARROYO J M, SIERRA-ALVAREZ R, et al. Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions[J]. Biotechnology Letters, 2014, 36(3):547-551.
    [77] ZHOU Y, GANDA L, LIM M, et al. Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs)[J]. Appl Microbiol Biot, 2010, 88(1):359-369.
    [78] ZHANG L, YANG J, FURUKAWA K. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox[J]. J Biosci Bioeng, 2010, 110(4):441-448.
    [79] PIJUAN M, YE L, YUAN Z. Free nitrous acid inhibition on the aerobic metabolism of poly-phosphate accumulating organisms[J]. Water Research, 2010, 44(20):6063-6072.
    [80] VADIVELU V M, KELLER J, YUAN Z. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture[J]. Biotechnol Bioeng, 2006, 95(5):830-839.
    [81] HE S, CHEN Y, QIN M, et al. Effects of temperature on anammox performance and community structure[J]. Bioresource Technol, 2018, 260(26):186-195.
    [82] ZHANG Y, HE S, NIU Q, et al. Characterization of three types of inhibition and their recovery processes in an anammox UASB reactor[J]. Biochem Eng J, 2016, 109(14):212-221.
    [83] NIU Q, HE S, ZHANG Y, et al. Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation[J]. Bioresource Technol, 2016, 203(23):132-141.
    [84] LIU Y, NIU Q, WANG S, et al. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system:Nitrogen removal potential and Microbial characterization[J]. Bioresource Technol, 2017, 244(25):463-472.
    [85] YIN Z, DOS SANTOS, CARLA E D, et al. Importance of the combined effects of dissolved oxygen and pH on optimization of nitrogen removal in anammox-enriched granular sludge[J]. Process Biochem, 2016, 51(9):1274-1282.
    [86] ZHANG H, DU R, CAO S B, et al. Mechanisms and characteristics of biofilm formation via novel DEAMOX system based on sequencing biofilm batch reactor[J]. J Biosci Bioeng, 2019, 127(2):206-212.
    [87] MURRAY R E, PARSONS L L, SMITH M S. Aerobic and anaerobic growth of rifampin-resistant denitrifying bacteria in soil[J]. Appl Environ Microb, 1990, 56(2):323-328.
    [88] SHENG S, LIU B, HOU X, et al. Effects of different carbon sources and C/N ratios on the simultaneous anammox and denitrification process[J]. Int Biodeter Biodegr, 2018, 127(13):26-34.
    [89] WANG B, PENG Y Z, GUO Y, et al. Impact of partial nitritation degree and C/N ratio on simultaneous Sludge Fermentation, Denitrification and Anammox process[J]. Bioresource Technol, 2016, 219(10):411-419.
    [90] MIAO Y, PENG Y Z, ZHANG L, et al. Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode:effect of influent C/N ratios[J]. Chemical Engineering Journal, 2018, 334(79):664-672.
    [91] DU R, CAO S B, WANG S, et al. Performance of partial denitrification (PD)-ANAMMOX process in simultaneously treating nitrate and low C/N domestic wastewater at low temperature[J]. Bioresource Technol, 2016, 219(29):420-429.
    [92] WANG Z, ZHANG L, ZHANG F, et al. Enhanced nitrogen removal from nitrate-rich mature leachate via partial denitrification (PD)-anammox under real-time control[J]. Bioresource Technol, 2019, 289(5):615-620.
    [93] KUMAR M, LIN J G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal——Strategies and issues[J]. Journal of Hazardous Materials, 2010, 178(249):1-9.
    [94] JEILL O H, SILVERSTEIN J. Oxygen inhibition of activated sludge denitrification[J]. Water Research, 1999, 33(8):1925-1937.
    [95] HERNANDEZ D, ROWE J J. Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration.[J]. Journal of Biological Chemistry, 1988, 263(17):7937-7939.
    [96] ZHENG Z, LI J, MA J, et al. Nitrogen removal via simultaneous partial nitrification, anammox and denitrification (SNAD) process under high DO condition[J]. Biodegradation, 2016, 27(4):195-208.
    [97] GUO J, PENG Y Z, WANG S, et al. Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater[J]. Process Biochem, 2009, 44(9):979-985.
    [98] ZHANG F, PENG Y Z, WANG S, et al. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate[J]. Journal of Hazardous Materials, 2019, 364(17):163-172.
    [99] KIM H, OGRAM A, BAE H S. Nitrification, Anammox and Denitrification along a Nutrient Gradient in the Florida Everglades[J]. Wetlands, 2016, 37(2):391-399.
    [100] YANG J, TRELA J, PLAZA E, et al. Oxidation-reduction potential (ORP) as a control parameter in a single-stage partial nitritation/anammox process treating reject water[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(10):2582-2589.
    [101] LI J, ZHU W, DONG H, et al. Performance and kinetics of ANAMMOX granular sludge with pH shock in a sequencing batch reactor[J]. Biodegradation, 2017, 28(4):245-259.
    [102] TOMASZEWSKI M, CEMA G, ZIEMBINSKA-BUCZYNSKA A. Influence of temperature and pH on the anammox process:A review and meta-analysis[J]. Chemosphere, 2017, 182(41):203-214.
    [103] TAO W, HE Y, WANG Z, et al. Effects of pH and temperature on coupling nitritation and anammox in biofilters treating dairy wastewater[J]. Ecol Eng, 2012, 47(28):76-82.
    [104] LOTTI T, KLEEREBEZEM R, VAN L M. Effect of temperature change on anammox activity[J]. Biotechnol Bioeng, 2015, 112(1):98-103.
    [105] BRIN L D, GIBLIN A E, RICH J. Similar temperature responses suggest future climate warming will not alter partitioning between denitrification and anammox in temperate marine sediments[J]. Global Change Biol, 2017, 23(1):331-340.
    [106] ZHANG Z Z, JI Y X, CHENG Y F, et al. Increased salinity improves the thermotolerance of mesophilic anammox consortia[J]. Science of the Total Environment, 2018, 644(10):710-716.
    [107] CHENG L, LI X, LIN X, et al. Dissimilatory nitrate reduction processes in sediments of urban river networks:Spatiotemporal variations and environmental implications[J]. Environ Pollut, 2016, 219(20):545-554.
    [108] GILBERT E M, AGRAWAL S, SCHWARTZ T, et al. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures[J]. Water Research, 2015, 81(131):92-100.
    [109] BYRNE N, STROUS M, CREPEAU V, et al. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents[J]. The ISME Journal, 2009, 3(1):117-123.
    [110] GAO D W, TAO Y. Versatility and application of anaerobic ammonium-oxidizing bacteria[J]. Appl Microbiol Biot, 2011, 91(4):887-894.
    [111] KOWALSKI M S, DEVLIN T, DI B A, et al. Accelerated start-up of a partial nitritation-anammox moving bed biofilm reactor[J]. Biochem Eng J, 2019, 145(2):83-89.
    [112] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences——an application survey[J]. Water Research, 2014, 55(65):292-303.
    [113] YANG J, ZHANG L, HIRA D, et al. Anammox treatment of high-salinity wastewater at ambient temperature[J]. Bioresource Technol, 2011, 102(3):2367-2372.
    [114] STROUS M, KUENEN J G, JETTEN M S. Key physiology of anaerobic ammonium oxidation[J]. Appl Environ Microb, 1999, 65(7):3248-3250.
    [115] RAUDKIVI M, ZEKKER I, RIKMANN E, et al. Nitrite inhibition and limitation-the effect of nitrite spiking on anammox biofilm, suspended and granular biomass[J]. Water Sci Technol, 2017, 75(2):313-321.
    [116] JENNI S, VLAEMINCK S E, MORGENROTH E, et al. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios[J]. Water Research, 2014, 49(56):316-326.
    [117] LOTTI T, KLEEREBEZEM R, ABELLEIRA-PEREIRA J M, et al. Faster through training:The anammox case[J]. Water Research, 2015, 81(12):261-268.
    [118] CHEN H, YU J J, JIA X Y, et al. Enhancement of anammox performance by Cu(Ⅱ), Ni(Ⅱ) and Fe(Ⅲ) supplementation[J]. Chemosphere, 2014, 117(117):610-616.
    [119] CAO X, CAO H, SHENG Y, et al. Mechanisms of Cu2+ migration, recovery and detoxification in Cu2+, containing wastewater treatment process with anaerobic granular sludge[J]. Environ Technol, 2014, 35(15):1956-1961.
    [120] VAL DEL RÍO Á, DA SILVA T, MARTINS T H, et al. Partial Nitritation-Anammox Granules:Short-Term Inhibitory Effects of Seven Metals on Anammox Activity[J]. Water, Air, & Soil Pollution, 2017, 228(11):439-448.
    [121] KALKAN AKTAN C, UZUNHASANOGLU A E, YAPSAKLI K. Speciation of nickel and zinc, its short-term inhibitory effect on anammox, and the associated microbial community composition[J]. Bioresource Technol, 2018, 268(3):558-567.
    [122] DAVEREY A, CHEN Y C, LIANG Y C, et al. Short-term effects of monoethanolamine and copper on the activities of anammox bacteria[J]. Sustainable Environment Research 2014, 24(5):324-331.
    [123] GUO Q, YANG C C, XU J L, et al. Individual and combined effects of substrate, heavy metal and hydraulic shocks on an anammox system[J]. Sep Purif Technol, 2015, 154(7):128-316.
    [124] JIN R C, ZHENG P, MAHMOOD Q, et al. Osmotic stress on nitrification in an airlift bioreactor[J]. Journal of hazardous materials, 2007, 146(1):148-154.
    [125] GIUSTINIANOVICH E A, CAMPOS J L, ROECKEL M D, et al. Influence of biomass acclimation on the performance of a partial nitritation-anammox reactor treating industrial saline effluents[J]. Chemosphere, 2018, 194(15):131-138.
    [126] VAL DEL RÍO Á, PICHEL A, FERNANDEZ-GONZALEZ N, et al. Performance and microbial features of the partial nitritation-anammox process treating fish canning wastewater with variable salt concentrations[J]. J Environ Manage, 2018, 208(14):112-121.
  • 加载中
计量
  • 文章访问数:  4407
  • HTML全文浏览数:  4407
  • PDF下载数:  169
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-13
王建辉, 游庆国, 申渝, 陈猷鹏. 短程反硝化-厌氧氨氧化耦合脱氮工艺影响因素与调控研究进展[J]. 环境化学, 2021, (4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302
引用本文: 王建辉, 游庆国, 申渝, 陈猷鹏. 短程反硝化-厌氧氨氧化耦合脱氮工艺影响因素与调控研究进展[J]. 环境化学, 2021, (4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302
WANG Jianhui, YOU Qingguo, SHEN Yu, CHEN Youpeng. Research advances on influence factors and regulation of Partial denitrification and Anammox coupling denitrification process[J]. Environmental Chemistry, 2021, (4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302
Citation: WANG Jianhui, YOU Qingguo, SHEN Yu, CHEN Youpeng. Research advances on influence factors and regulation of Partial denitrification and Anammox coupling denitrification process[J]. Environmental Chemistry, 2021, (4): 1216-1231. doi: 10.7524/j.issn.0254-6108.2020091302

短程反硝化-厌氧氨氧化耦合脱氮工艺影响因素与调控研究进展

    通讯作者: 申渝, E-mail: shenyu@ctbu.edu.cn
  • 1. 重庆工商大学, 智能制造服务国际科技合作基地, 重庆, 400067;
  • 2. 重庆南向泰斯环保技术研究院有限公司, 重庆, 400069;
  • 3. 重庆工商大学, 环境与资源学院、催化与环境新材料重庆市重点实验室, 重庆, 400067;
  • 4. 重庆大学, 环境与生态学院, 重庆, 400045
基金项目:

重庆市教委科研项目(KJQN201800831),国家自然科学基金(21876016),重庆工商大学工业污染控制新技术重庆市高校创新群体(CXQT19023)和科研项目(1853061),博士后科学基金(2019M653825XB,cstc2019jcyj-bshX0061,2019SWZC-bsh001))资助.

摘要: 含氮废水大量排放会危害环境安全,影响社会经济发展.短程反硝化-厌氧氨氧化(PD-Anammox,简称PD/A)耦合工艺作为一种新型耦合生物脱氮工艺,与传统脱氮工艺相比,具有能耗低、产泥少、温室气体排放少和节约曝气量等优点,适于处理含氮甚至高含氮废水,是近年来脱氮工艺研究领域的热点,有着广阔的应用前景.但该耦合工艺对环境要求较为严苛,其效能受到基质底物(如有机物和"三氮")、氧化还原性(DO和ORP)、酸碱度、污泥接种和驯化等因素影响,导致其工艺优化运行和工业化应用难度较大.通过对PD/A耦合工艺方面的系列研究和应用进行对比发现,操作条件、污泥种群结构及运行方式等因素之间的差异,是影响工艺效能的重要原因.基于影响特征和机制将常见影响因素归纳为几个类别:底物负荷、氧化还原特性、酸碱度、温度、污泥形态与驯化及其它因素,并总结了每种影响因素的特点、抑制机制和调控范围,给出了其对应的优化运行调控方案,有助于提高该耦合工艺的高效性和稳定性,为其启动和运行调控提供了技术支持,并为该工艺影响因素、代谢机理与调控方法等方面的研究提供了参考.

English Abstract

参考文献 (126)

返回顶部

目录

/

返回文章
返回