MoO3/TiO2纳米管的制备及其光催化降解多环芳烃的机制

宋友桂, 何伟煜, 孙贤波, 蔡正清. MoO3/TiO2纳米管的制备及其光催化降解多环芳烃的机制[J]. 环境化学, 2020, (3): 624-635. doi: 10.7524/j.issn.0254-6108.2019083001
引用本文: 宋友桂, 何伟煜, 孙贤波, 蔡正清. MoO3/TiO2纳米管的制备及其光催化降解多环芳烃的机制[J]. 环境化学, 2020, (3): 624-635. doi: 10.7524/j.issn.0254-6108.2019083001
SONG Yougui, HE Weiyu, SUN Xianbo, CAI Zhengqing. Preparation of MoO3/TiO2 nanotubes and the mechanism study for the photocatalytic degradation of PAHs[J]. Environmental Chemistry, 2020, (3): 624-635. doi: 10.7524/j.issn.0254-6108.2019083001
Citation: SONG Yougui, HE Weiyu, SUN Xianbo, CAI Zhengqing. Preparation of MoO3/TiO2 nanotubes and the mechanism study for the photocatalytic degradation of PAHs[J]. Environmental Chemistry, 2020, (3): 624-635. doi: 10.7524/j.issn.0254-6108.2019083001

MoO3/TiO2纳米管的制备及其光催化降解多环芳烃的机制

    通讯作者: 孙贤波, E-mail: xbsun@ecust.edu.cn 蔡正清, E-mail: caizhengqing@ecust.edu.cn
  • 基金项目:

    国家自然科学基金(41807340)资助.

Preparation of MoO3/TiO2 nanotubes and the mechanism study for the photocatalytic degradation of PAHs

    Corresponding authors: SUN Xianbo, xbsun@ecust.edu.cn ;  CAI Zhengqing, caizhengqing@ecust.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41807340).
  • 摘要: 本研究将热分解法制备的MoO3与水热法制备的TiO2纳米管复合,得到具有高太阳光催化活性的MoO3/TiO2纳米管异质结催化剂.研究中以芘为模型多环芳烃(polycyclic aromatic hydrocarbons,PAHs),探究了MoO3/TiO2纳米管模拟在太阳光下催化降解PAHs的效果及效率提升的机制.结果表明,MoO3和TiO2纳米管间形成的p-n异质结结构,降低了材料的能带间隙而获得更高的可见光利用效率,并有效促进了电子和空穴的分离,从而提高了复合材料的光催化活性.1% MoO3/TiO2纳米管催化降解芘速率(k)较MoO3和TiO2(锐钛矿)分别提升了5.3倍和1.5倍.催化体系中产生的·OH和光生空穴在芘的降解中起主要作用.
  • 加载中
  • [1] Toxic and priority pollutants under the clean water act:Priority pollutant List[S]. US EPA, 2014.
    [2] SCHNEIDER J, GROSSER R, JAYASIMHULU K, et al. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp strain rjgii-135, isolated from a former coal gasification site[J]. Applied and Environmental Microbiology, 1996, 62(1):13-19.
    [3] WARD C P, SHARPLESS C M, VALENTINE D L, et al. Partial photochemical oxidation was a dominant fate of Deepwater Horizon surface oil[J]. Environmental Science & Technology, 2018, 52(4):1797-1805.
    [4] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
    [5] BHATTACHARYYA K, MAJEED J, DEY K K, et al. Effect of Mo-incorporation in the TiO2 lattice:A mechanistic basis for photocatalytic dye degradation[J]. The Journal of Physical Chemistry C, 2014, 118(29):15946-15962.
    [6] JIN Y J, DAI Z Y, LIU F, et al. Bactericidal mechanisms of Ag2O/TNBs under both dark and light conditions[J]. Water Research, 2013, 47(5):1837-1847.
    [7] CHENG K Y, CAI Z Q, FU J, et al. Synergistic adsorption of Cu(Ⅱ) and photocatalytic degradation of phenanthrene by a jaboticaba-like TiO2/titanate nanotube composite:An experimental and theoretical study[J]. Chemical Engineering Journal, 2019, 358:1155-1165.
    [8] YANG Y, LI X J, CHEN J T, et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 163(3):517-522.
    [9] CAI Z Q, ZHAO X, WANG T, et al. Reusable platinum-deposited anatase/hexa-titanate nanotubes:Roles of reduced and oxidized platinum on enhanced solar-light-driven photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1):547-555.
    [10] LIU W, BORTHWICK A G L, LI X, et al. High photocatalytic and adsorptive performance of anatase-covered titanate nanotubes prepared by wet chemical reaction[J]. Microporous and Mesoporous Materials, 2014, 186:168-175.
    [11] XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4, Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B:Environmental, 2018, 229:96-104.
    [12] GAO Y, ELDER S A. TEM study of TiO2 nanocrystals with different particle size and shape[J]. Materials Letters, 2000, 44(3-4):228-232.
    [13] 韩维屏, 尹喜林, 李永战. MoO3与TiO2界面化学分散的研究[J]. 催化学报, 1992, 13(1):19-24.

    HAN W P, YIN X L, LI Y Z. Study on chemical dispersion of MoO3 and TiO2 interface[J]. Chinese Journal of Catalysis, 1992, 13(1):19-24(in Chinese).

    [14] LU M X, SHAO C L, WANG K X, et al. p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions:Controlled fabrication and enhanced photocatalytic properties[J]. ACS Applied Materials and Interfaces, 2014, 6(12):9004-9012.
    [15] SVIRIDOVA T V, SADOVSKAУA L YU, SHCHUKINA E M, et al. Nanoengineered thin-film TiO2/h-MoO3 photocatalysts capable to accumulate photoinduced charge[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 327:44-50.
    [16] KIM S, KIM M, HWANG S H, et al. Enhancement of photocatalytic activity of titania-titanate nanotubes by surface modification[J]. Applied Catalysis B:Environmental, 2012, 123-124:391-397.
    [17] LIU H, LV T, ZHU C K, et al. Direct bandgap narrowing of TiO2/MoO3 heterostructure composites for enhanced solar-driven photocatalytic activity[J]. Solar Energy Materials and Solar Cells, 2016, 153:1-8.
    [18] CHEN Y J, XIAO G, WANG T S, et al. α-MoO3/TiO2 core/shell nanorods:Controlled-synthesis and low-temperature gas sensing properties[J]. Sensors and Actuators B Chemical, 2011, 155(1):270-277.
    [19] NAVGIRE M, YELWANDE A, TAYDE D, et al. Photodegradation of molasses by a MoO3-TiO2 nanocrystalline composite material[J]. Chinese Journal of Catalysis, 2012, 33(2-3):261-266.
    [20] HU R R, ZHONG S H. Surface structure and photon absorption property of supported coupled semiconductors MoO3-TiO2/SiO2[J]. Chinese Journal of Chemical Physics, 2005, 18(3):389-394.
    [21] LI N, LI Y M, ZHOU Y J, et al. Interfacial-charge-transfer-induced photochromism of MoO3@TiO2 crystalline-core amorphous-shell nanorods[J]. Solar Energy Materials and Solar Cells, 2017, 160:116-125.
    [22] ZHANG J, XI J H, JI Z G. Mo plus N codoped TiO2 sheets with dominant (001) facets for enhancing visible-light photocatalytic activity[J]. Journal of Materials Chemistry, 2012, 22(34):17700-17708.
  • 加载中
计量
  • 文章访问数:  1989
  • HTML全文浏览数:  1989
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-30

MoO3/TiO2纳米管的制备及其光催化降解多环芳烃的机制

基金项目:

国家自然科学基金(41807340)资助.

摘要: 本研究将热分解法制备的MoO3与水热法制备的TiO2纳米管复合,得到具有高太阳光催化活性的MoO3/TiO2纳米管异质结催化剂.研究中以芘为模型多环芳烃(polycyclic aromatic hydrocarbons,PAHs),探究了MoO3/TiO2纳米管模拟在太阳光下催化降解PAHs的效果及效率提升的机制.结果表明,MoO3和TiO2纳米管间形成的p-n异质结结构,降低了材料的能带间隙而获得更高的可见光利用效率,并有效促进了电子和空穴的分离,从而提高了复合材料的光催化活性.1% MoO3/TiO2纳米管催化降解芘速率(k)较MoO3和TiO2(锐钛矿)分别提升了5.3倍和1.5倍.催化体系中产生的·OH和光生空穴在芘的降解中起主要作用.

English Abstract

参考文献 (22)

目录

/

返回文章
返回