典型类雌激素的降解方法及其影响因素研究进展

熊美昱, 夏雨琪, 彭程. 典型类雌激素的降解方法及其影响因素研究进展[J]. 环境化学, 2020, (3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303
引用本文: 熊美昱, 夏雨琪, 彭程. 典型类雌激素的降解方法及其影响因素研究进展[J]. 环境化学, 2020, (3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303
XIONG Meiyu, XIA Yuqi, PENG Cheng. Degradation methods and influence factors of typical estrogen-like substances[J]. Environmental Chemistry, 2020, (3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303
Citation: XIONG Meiyu, XIA Yuqi, PENG Cheng. Degradation methods and influence factors of typical estrogen-like substances[J]. Environmental Chemistry, 2020, (3): 610-623. doi: 10.7524/j.issn.0254-6108.2019101303

典型类雌激素的降解方法及其影响因素研究进展

    通讯作者: 彭程, E-mail: cpeng@dhu.edu.cn
  • 基金项目:

    国家自然科学基金(41807461),上海市青年科技英才扬帆计划(18YF1401000)和中央高校基本科研业务费专项资金(2232018D3-19)资助.

Degradation methods and influence factors of typical estrogen-like substances

    Corresponding author: PENG Cheng, cpeng@dhu.edu.cn
  • Fund Project: Supported by National Natural Science Foundation of China (41807461), Shanghai Sailing Program (18YF1401000) and Fundamental Research Funds for the Central Universities (2232018D3-19).
  • 摘要: 类雌激素是一类新兴污染物,目前在环境中普遍存在,且在极低浓度下可对生物体和环境产生重大威胁.本文重点介绍了酚类、天然类固醇类和邻苯二甲酸酯等3种典型类雌激素的来源、环境分布特征及其生物毒性,综述了典型类雌激素的最新化学降解法(直接光解法和高级氧化法)和生物降解法(菌类降解法和藻类降解法)及其特点.直接光解法操作简便,但降解效果不佳;高级氧化法能快速高效地去除类雌激素,但操作相对复杂、影响因素较多;生物降解法的应用性强,但处理周期长、受环境因素影响大.此外还阐述了类雌激素的降解机理及其影响因素,最后对典型类雌激素的多种高效联合降解技术提出了展望.
  • 加载中
  • [1] 赵美萍, 李元宗, 常文保. 酚类环境雌激素的分析研究进展[J]. 分析化学, 2003,31(1):103-109.

    ZHAO M P, LI Y Z, CHANG W B. Analysis and research progress of phenolic environmental estrogens[J]. Analytical Chemistry, 2003,31(1):103-109(in Chinese).

    [2] 吴越. 超高效液相色谱-串联质谱法测定徐州市售食品中双酚A污染水平[J].中国卫生检验杂志, 2019, 29(15):1821-1822.

    WU Y. Investigation on the pollution level of bisphenol A in foods sold in Xuzhou City in 2017[J]. China Health Lab Tec, 2019, 29(15):1821-1822(in Chinese).

    [3] 李晗. 铋系复合光催化剂的制备及其降解17β-雌二醇的研究[D]. 昆明:云南大学, 2016:1-69. LI H. Preparation of bismuth based composite photocatalyst and degradation of 17β-estradiol[D]. Kunming:Yunan University,2016

    :1-69(in Chinese).

    [4] 刘先利,刘彬,邓南圣. 环境内分泌干扰物研究进展[J]. 上海环境科学,2003, 22(1):57-63.

    LIU X L, LIU B, DENG S N. Study progress of environmental endocrine disruptors[J]. Shanghai Environmental Science, 2003, 22(1):57-63(in Chinese).

    [5] 周昕. 青岛李村河-胶州湾水域雌激素水平的研究[D]. 青岛:中国海洋大学, 2009. ZHOU X. Studies on levels of estrogens in Licun River-Jiaozhou Bay water area[D].Qingdao:Ocean University of China, 2009(in Chinese).
    [6] 曾瑞伟. 大豆秸秆中异黄酮对湖羊生长代谢及肉品质的影响[D].南京:南京农业大学, 2011:1-2. ZENG R W. The effects of isoflavones in soybean straw on the growth and meat quality of goat[D]. Nanjing:Nanjing Agricultural University, 2011:1

    -2(in Chinese).

    [7] 姜宪娟, 王丽虹, 许征, 等. 消费品中的环境内分泌干扰物(EDCs)及其对健康的危害[J].检验检疫学刊, 2018, 28(6):52-55.

    JIANG X J, WANG L H, XU Z, et al. The endocrine disrupting chemicals in consumer products and their effects on humans health[J]. Journal of Inspection and Quality, 2018, 28(6):52-55(in Chinese).

    [8]
    [9]
    [10] 韩伟, 李艳霞, 杨明, 等. 环境雄激素的危害、来源与环境行为[J]. 生态学报, 2010, 30(6):1594-1603.

    HAN W, LI YX, YANG M, et al. Effects, sources and behaviors of environmental androgens[J]. Acta Ecologica Sinica, 2010, 30(6):1594-1603(in Chinese).

    [11] 陈晓雯, 赵建亮, 刘有胜, 等. 长江中下游环境激素效应的污染特征及生态风险[J]. 生态毒理学报, 2016, 11(3):191-203.

    CHEN X W, ZHAO J L LIU Y S, et al. Occurrence and ecological risks of hormonal activities in the middle and lower reaches of Yangtze River[J]. Asian Journal of Ecotoxicology, 2016, 11(3):191-203(in Chinese).

    [12] WANG L, YING G G, CHEN F, et al. Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools[J]. Environmental Pollution,2012, 165:241-249(in Chinese).
    [13] 熊杰, 钱蜀, 谢永洪, 等. 丰水期沱江水系环境内分泌干扰物分布特征[J]. 中国环境监测, 2014, 30(2):53-57.

    XIONG J, QIAN S, XIE Y H, et al. Study on distribution characteristics of environmental endocrine disruptors(EEDs) in Tuojiang River during high flow period[J]. Environmental Monitoring in China, 2014, 30(2):53-57(in Chinese).

    [14] 龚剑, 冉勇, 陈迪云, 等. 珠江三角洲两条主要河流沉积物中的典型内分泌干扰物污染状况[J]. 生态环境学报, 2011, 20(Z1):1111-1116.

    GONG J, RAN Y, CHEN D Y, et al. Pollution of typical endocrine disruptors in sediments of two major rivers in the Pearl River Delta[J]. Journal of Ecological Environment,2011,20(Z1):1111-1116(in Chinese).

    [15] 张照韩, 冯玉杰, 高鹏, 等松花江水内分泌干扰物及雌激素活性调查[J]. 哈尔滨工业大学学报, 2011, 43(12):58-62.

    ZHANG Z H, FENG Y J, GAO P, et al. Preliminary survey of endocrine disrupting compounds and estrogenicity in Songhua River[J]. Journal of Harbin Institute of Technology, 2011, 43(12):58-62(in Chinese).

    [16] 梁栋, 宗栋良. 深圳主要河流中雌激素污染调查[J]. 环境监测管理与技术, 2013, 25(2):29-32.

    LIANG D, ZONG D L. Pollution investigation of estrogen in major rivers of Shenzhen[J]. The Administration and Technique of Environmental Monitoring, 2013, 25(2):29-32(in Chinese).

    [17] 刘瑞. 全国农田土壤内分泌干扰效应的生态风险评价[D]. 杭州:浙江大学, 2017. 17-62. LIU R. Ecological risk assessment of endocrine disrupting effects in agricultural soils across China[D]. Hangzhou:Zhejiang University, 2017. 17

    -62(in Chinese).

    [18] ZHAO J L, YING G G, YANG B, et al.Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays[J]. Environmental Toxicology and Chemistry,2011,30(10):2208-2215(in Chinese).
    [19] 周家辉, 陈涛涛, 李芹, 等. 双酚A对稀有鮈鲫胚胎及仔鱼的急性毒性[J]. 浙江农业科学, 2019, 60(6):1039-1042.

    ZHOU J H, CHEN T T, LI Q, et al. Acute toxicity of bisphenol A to embryo and larva of Carassius auratus[J]. Zhejiang Agricultural Science,2019,60(6):1039-1042(in Chinese).

    [20]
    [21] 马林, 李丹, 李昀谦, 等. 双酚A对小鼠睾丸间质细胞毒性及miR-203-3p表达的影响[J]. 环境与职业医学, 2019, 36(5):484-489.

    MA L, LI D, LI Y Q, et al. Effects of bisphenol A on mouse Leydig cells and miR-203-3p expression[J]. Journal of Environmental and Occupational Medicine, 2019, 36(5):484-489(in Chinese).

    [22] 张运超. 四溴双酚A对人体正常肝细胞(L02)的毒性作用及机理[D]. 上海:华东理工大学, 2019:36-57. ZHANG Y C. Toxic effects and mechanism of tetrabromobisphenol A on human normal liver cells(L02)[D].Shanghai:East China University of Science and Technology, 2019

    :36-57(in Chinese).

    [23] 岳宗豪, 赵欢, 周一兵. 酚类环境雌激素对水生生物毒性效应的研究进展[J]. 生态毒理学报, 2014, 9(2):205-212.

    YUE Z H, ZHAO H, ZHOU Y B. Research progress in toxic effects of phenolic environmental estrogens on aquatic organisms[J]. Asian Journal of Ecotoxicology, 2014, 9(2):205-212(in Chinese).

    [24] 寇胜男, 朗朗, 季宇彬. 雌二醇对生物体内分泌系统毒性作用机制的研究[J]. 安全与环境工程, 2012, 19(1):15-18.

    KOU S N, LANG L, JI Y B. Toxic effects of estradiol on endocrine[J]. Safety and Environmental Engineering, 2012, 19(1):15-18(in Chinese).

    [25]
    [26] 张莹, 金爱, 王旭东. 17β-雌二醇素对人三阴乳腺癌细胞增殖和凋亡的影响[J]. 贵州医科大学学报, 2019(8):886-891. ZHANG Y, JIN A, WANG X D. Effect of 17

    beta-estradiol on proliferation and apoptosis of human triple negative breast cancer cells[J]. Journal of Guizhou Medical University, 2019(8):886-891(in Chinese).

    [27] 任祥春, 季爽, 张文英, 等. 雌二醇调控VEGFα表达诱导肺腺癌A549细胞血管形成[J]. 中国药理学通报, 2019(9):1262-1266. REN X C, JI S, ZHANG W Y, et al. Estradiol regulates VEGFα expression and induces angiogenesis in lung adenocarcinoma A549

    cells[J]. Chinese Pharmacological Bulletin,2019(9):1262-1266(in Chinese).

    [28] 吴冠宇. 邻苯二甲酸二丁酯对雄性小鼠生殖系统的影响[D]. 长春:吉林大学, 2015:19-35. WU G Y. Effect of dibutyl phthalate on reproduction system of male mice[D]. Changchun:Jilin University, 2015:19

    -35(in Chinese).

    [29] 王雪金, 周云清, 罗湘闽, 等. 邻苯二甲酸二丁酯对大鼠卵巢颗粒细胞中细胞凋亡因子Bcl-2、Bax表达的影响[J]. 实用预防医学, 2015, 22(2):155-158.

    WANG X J, ZHOU Y Q, LUO X M, et al. Effect of dibutyl phthalate on the expression of apoptosis factor Bcl-2 and Bax in rat ovarian granulosa cells[J]. Pract Prev Med, 2015, 22(2):155-158(in Chinese).

    [30] 刘鹏, 朱嘉月, 孙增荣, 等邻苯二甲酸二丁酯暴露对青春期雌性大鼠卵巢P450scc基因表达的影响[J]. 天津医科大学学报, 2012, 18(1):27-30.

    LIU P, ZHU J Y, SUN Z R, et al. Influence of dibutyl phthalate on the gene expression of P450scc of ovary in pubertal female rats[J]. Journal of Tianjin Medical University, 2012, 18(1):27-30(in Chinese).

    [31] 朱嘉月, 燕美玲, 刘鹏. 邻苯二甲酸二丁酯暴露对大鼠卵巢PPARγ mRNA表达的影响[J]. 环境与健康杂志, 2013, 30(8):679-681.

    ZHU J Y, YAN M L, LIU P. Effects of dibutyl phthalate on expression of PPARγ mRNA in ovary of rats[J]. J Environ Health, 2013, 30(8):679-681(in Chinese).

    [32] 李松. 三种邻苯二甲酸酯类塑化剂与DNA相互作用研究[D]. 南昌:南昌大学, 2017:21-57. LI S. Investigation on the Interaction between three Phthalic Acid Esters Plasticizers and DNA[D]. Nanchang:Nanchang University, 2017:21

    -57(in Chinese).

    [33] LIU B,LIU XL. Direct photolysis of estrogens in aqueous solutions[J]. Science of the Total Environment, 2003, 320:269-274.
    [34] CARLSON JC., STEFAN MI, PARNIS MJ, et al. Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution[J]. Water Research, 2015, 84:350-361.
    [35] SOUISSI Y, BOURCIER S, BOUCHONNET S. et al. Estrone direct photolysis:By-product identification using LC-Q-TOF[J]. Chemosphere, 2012, 87:185-193.
    [36] CHEN P J, KARL G L, DAVID E H, et al. Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation[J]. Chemosphere, 2006, 65:1094-1102.
    [37] KANG Y M, KIM M K, ZOH K D. Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis[J]. Chemosphere, 2018, 204:148-155.
    [38] LI S, ZHANG G S, WANG P, et al. Microwave-enhanced Mn-Fenton process for the removal of BPA in water[J]. Chemical Engineering Journal, 2016, 294(2016):371-379.
    [39] ESCALONA I, FORTUNY A, STUBER F, et al. Fenton coupled with nanofiltration for elimination of Bisphenol A[J]. Desalination, 2014, 345:77-84.
    [40] LI Y M, ZHANG A. Removal of steroid estrogens from waste activated sludge using Fenton oxidation:Influencing factors and degradation intermediates[J]. Chemosphere, 2014, 105:24-30.
    [41] 王莉娜,李刚.可见光铋系光催化材料的研究进展[J].科技信息,2012(36):586-588. WANG L N, LI G. Progress in visible bismuth photocatalytic materials[J]. Science & Technology Information,2012

    (36):586-588(in Chinese).

    [42] 单文杰, 张莹. 铋系复合光催化剂的制备及其对双酚A光催化降解研究[J]. 化工新型材料, 2019, 47(4):200-203.

    SHAN W J, ZHANG Y. In-situ preparation of bismuth-based composite with enhanced photocatalytic activity for bisphenol A[J]. New Chemical Materials, 2019, 47(4):200-203(in Chinese).

    [43] 张嘉明,张洪光,吴瑞,等.二氧化钛纳米棒的制备及抗菌性能研究[J].中国无机分析化学,2018,8(6):68-70.

    ZHANG J M, ZHANG H G, WU R, et al. Preparation of TiO2 nanorods and research of its antibacterial property[J]. Chinese Journal of Inorganic Analytical Chemistry,2018,8(6):68-79(in Chinese).

    [44] 苟喆,孟家光,张琳玫,等.纳米TiO2自清洁溶胶的制备及其性能[J].纺织学报,2016,37(3):98-103.

    GOU Z, MENG J G, ZHANG L M, et al. Preparation and properties of self-cleaning nano-TiO2 sol[J].Journal of Textile Research,2016,37(3):98-103(in Chinese).

    [45] MORI K, YAMAAHITA H, ANPO M. Photocatalytic reduction of CO2 with H2O on various titanium oxide phtotocatalysts[J]. RSC Advances, 2012, 2:3165-3172.
    [46] CHEN X B, MAO S S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications[J]. Chemical Reviews,2007,107(7):2891~2959.
    [47] 杨烨. 石墨烯基二氧化钛复合光催化剂的制备及其对水中17α-乙炔基雌二醇的去除研究[D]. 昆明:昆明理工大学, 2015:19-56. YANG Y. Study on degradation of 17α-ethynyl-estradiol from water by preparation graphene based TiO2

    photocatalyst[D].Kunming:Kunming University of Science and Technology, 2015:19-56(in Chinese).

    [48] CHEN F Y, AN W J, LI Y, et al. Fabricating 3D porous PANI/TiO2-graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA[J]. Applied Surface Science, 2018, 427:123-132.
    [49]
    [50] XIAO X, HAO R, LIANG M, et al. One-pot solvothermal synthesis of three-dimensional (3D)BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A[J]. Journal of Hazardous Materials, 2012, 233-234:122-130.
    [51] HE X J, WINFRED G A, PELAEZ M, et al. Assessment of nitrogen-fluorine-codoped TiO2 under visible light for degradation of BPA:Implication for field remediation[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 314:81-92.
    [52] SOMALINGAM K, MCDONAGH A, ZHOU J L, et al. Photocatalysis of estrone in water and wastewater:Comparison between Au-TiO2 nanocomposite and TiO2, and degradation by-products[J]. Science of the Total Environment, 2018, 610-611:521-530.
    [53] GARG A, SINGHANIA T, SINGH A, et al. Photocatalytic degradation of bisphenol-A using N, Co Codoped TiO2 catalyst under solar light[J]. Scientific Reports, 2019,9:765.
    [54] 邹亚文,张泽明,张洪海,等.水体系中3种常见邻苯二甲酸酯的光化学降解研究[J].环境科学学报,2018,38(8):3012-3020.

    ZHOU Y W, ZHANG Z M, ZHANG H H, et al. Study on photochemical degradation of three kinds of phthalicacidesters in aqueous solution[J]. Journal of Environmental Science, 2018,38(8):3012-3020(in Chinese).

    [55]
    [56] YU Q Q, FENG L, CHAI X N, et al. Enhanced surface Fenton degradation of BPA in soil with a high pH[J]. Chemosphere, 2019, 220:335-343.
    [57] ZHANG W L, LI Y, SU Y L, et al. Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent[J]. Journal of Hazardous Materials, 2012, 215-216:252-258.
    [58] LIU J X, XIE F X, LI R, et al. TiO2-x/Ag3PO4 photocatalyst:Oxygen vacancy dependent visible light photocatalytic performance and BPA degradative pathway[J]. Materials Science in Semiconductor Processing, 2019, 97:1-10.
    [59] 田克俭,孟繁星,霍洪亮.环境雌激素的微生物降解[J].微生物学报,2019,59(3):442-453.

    TIAN K J, MENG F X, HUO H L. Microbial degradation of environmental estrogens[J]. Journal of Microbiology,2019,59(3):442-453(in Chinese).

    [60] 王嘉翼, 樊双虎, 任超, 等. 一株黄色杆菌的分离鉴定及对邻苯二甲酸酯的降解研究[J]. 生物技术通报, 2018, 34(10):157-164.

    WANG J Y, FAN S H, REN C, et al. Identification of newly isolated Xanthobacter sp. and its degradability to phthalic acid esters[J]. Biotechnology Bulletin,2018, 34(10):157-164(in Chinese).

    [61] 何灿. 氧化沟污水处理工艺中内分泌干扰物的去除规律研究[D].合肥:安徽理工大学,2010. HE C. Study on the removal rules of EDCs in oxidation ditch sewage treatment process[D]. Hefei:AnHui University of Science and Technology, 2010(in Chinese).
    [62] 阳春,张璐,陈艾,等.悬浮填料污水处理工艺对雌激素的强化去除特性[J].中国给水排水,2017,33(1):39-42.

    YANG C, ZHANG L,CHEN A, et al. Removal characteristics of estrogens by sewage treatment process with suspended media[J]. China Water & Wastewater, 2017,33(1):39-42(in Chinese).

    [63] 陈勐,宋芳,吕团结,等.生物增效对某污水处理厂环境雌激素去除效果研究[J].河南化工,2018,35(2):24-27.

    CHEN M, SONG F, LV T J, et al. Study on the bioaugmentation effect on the removal efficiency of environmental estrogens in the sewage treatment plant[J]. Henan Chemical Industry, 2018,35(2):24-27(in Chinese).

    [64] 王凌云, 张锡辉, 陶益,等. 活性污泥对雌激素的吸附和好氧生物降解[J]. 哈尔滨工业大学学报, 2013, 45(8):117-121.

    WANG L Y, ZHANG X H, TAO Y, et al. Adsorption and biodegradation of typical estrogens in activated sludge under aerobic conditions[J]. Journal of Harbin Institute of Technology, 2013, 45(8):117-121(in Chinese).

    [65] 纪付元, 曹飞, 张梦涛, 等. 贫营养条件下17β-雌二醇厌氧生物降解规律研究[J]. 环境科学与技术, 2014, 37(S1):15-18.

    JI F Y, CAO F, ZHANG M T, et al. Anaerobic biotrasformation of 17β-estradiol under oligotrophic conditions[J]. Environmental Science and Technology, 2014, 37(S1):15-18(in Chinese).

    [66] 汪晶, 柯凤乔. 一株降解雌二醇的恶臭假单胞菌的分离鉴定及降解活性[J]. 环境化学, 2015, 34(4):814-816.

    WANG J, KE F Q. Isolation, identification and degradation activity of a strain of Pseudomonas putida degrading estradiol[J]. Environmental Chemistry,2015, 34(4):814-816(in Chinese).

    [67] 梁志锋, 周文, 林庆祺,等. 城市污泥中邻苯二甲酸酯(PAEs)的厌氧微生物降解[J]. 应用生态学报, 2014, 25(4):1163-1170.

    LIANG Z F, ZHOU W, LIN Q Q, et al. Anaerobic biodegradation of phthalate acid esters(PAEs) in municipal sludge[J]. Chinese Journal of Applied Ecology, 2014, 25(4):1163-1170(in Chinese).

    [68] JU J, SHEN L J, XIE Y F, et al. Degradation potential of bisphenol A by Lactobacillus reuteri[J]. LWT-Food Science and Technology, 2019, 106:7-14.
    [69] SARMA H, NAVA A R, MANRIQUEZ A M E, et al. Biodegradation of bisphenol A by bacterial consortia isolated directly from river sediments[J]. Environmental Technology & Innovation, 2019, 14:100314.
    [70] GU L P, HUANG B, HAN F X, et al. Spontaneous changes in dissolved organic matter affect the bio-removal of steroid estrogens[J]. Science of the Total Environment, 2019, 689:616-624.
    [71] GU L P, HUANG B, HAN F X, et al. Intermittent light and microbial action of mixed endogenous source DOM affects degradation of 17β-estradiol day after day in a relatively deep natural anaerobic aqueous environment[J]. Journal of Hazardous Materials, 2019, 369:40-49.
    [72] 杨振东, 黎征, 张军, 等. 两株壬基酚和双酚A高效降解菌株的筛选和降解特性[J]. 工业安全与环保, 2018, 44(1):91-95.

    YANG Z D, LI Z, ZHANG J, et al. Isolation and identification characteristics of two bacterium strains for degradation of NP and BPA[J]. Industrial Safety and Environmental Protection, 2018, 44(1):91-95(in Chinese).

    [73] 马云, 刘学虎, 洪骏. 双酚A降解菌的分离鉴定和降解特性研究[J]. 浙江工业大学学报, 2014, 42(2):162-166.

    MA Y, LIU X H, HONG J. Isolation and Characterization of a bacterium degrading bisphenol A[J]. Journal of Zhangjiang University of Technology, 2014, 42(2):162-166(in Chinese).

    [74] 王迪,马溪平,孟雪莲,等.一株双酚A降解菌的筛选、鉴定及其生长、降解条件[J].化工环保,2017,37(2):189-193.

    WANG D, MA X P, MENG X L, et al. Screening,identification of a bisphenol A-degrading strain and its growth and degradation conditions[J]. Environmental Protection of Chemical Industry, 2017,37(2):189-193(in Chinese).

    [75] 王乐乐. 沉水植物降解双酚A内生菌的筛选及降解机理研究[D]. 武汉:华中师范大学, 2015:47-48. WANG L L. Study of Bisphenol-A-degrading endophytic bacteria from submerged plants and their degrading mechanisms[D]. Wuhan:Central China Normal University, 2015:47

    -48(in Chinese).

    [76] 吴蔓莉, 祝长成, 祁燕云, 等. 1株镰刀菌属KY123915的分离及其对17β-雌二醇的降解特性[J]. 环境科学, 2018, 39(10):4802-4808.

    WU M L, ZHU C C, QI Y Y, et al. Isolation, identification and degradation characteristics of a 17β-estradiol degrading strain Fusarium sp. KY123915[J]. Environmental Science,2018, 39(10):4802-4808(in Chinese).

    [77] 靳申宝, 马喆, 田克俭, 等. 雌二醇降解菌Acinetobacter sp. DS1的筛选及降解条件优化[J]. 环境科学与技术, 2019, 42(1):94-100.

    JIN S B, MA Z, TIAN K J, et al. Study of Escherichia Acinetobacter sp. DS1:Screening and optimization of estrogen degradation condition[J]. Environmental Science and Technology, 2019, 42(1):94-100(in Chinese).

    [78] 于清淼, 王平, 刘东波, 等. 17β-雌二醇降解菌红球菌(Rhodococcus sp.)DS201的分离鉴定及其特性研究[J]. 东北师范大学学报(自然科学版), 2017, 49

    (1):140-147. WANG Q M, WANG P, LIU D B, et al. Isolation and characterization of 17β-estradiol degrading bacterium Rhodococcus sp. DS201[J]. Journal of Northeast Normal University (Natural Science Edition),2017, 49(1):140-147(in Chinese).

    [79] 刘静娴. 雌二醇降解菌(Rhodococcus sp. JX-2)的分离鉴定、固定化及降解性能[D].南京:.南京农业大学, 2016:47-49. LIU X J. Isolation, identification, immobilization and degradation performance of the estradiol-degrading bacterium[D].Nanjing:Nanjing Agricultural University,2016:47

    -49(in Chinese).

    [80] 梁浩花, 陶红, 王亚娟, 等. 一株邻苯二甲酸二丁酯和邻苯二甲酸二(2-乙基己基)酯降解菌的筛选鉴定与降解特性[J]. 浙江农业学报, 2019, 31(7):1145-1153.

    LIANG H H, TAO H, WANG Y J, et al. Isolation, identification and degradation characteristics of a dibutyl phthalate and di-(2-ethylhexyl) phthalate degrading bacterium[J]. Acta Agriculturae Zhejiangensis,2019, 31(7):1145-1153(in Chinese).

    [81] 纪秀.邻苯二甲酸二丁酯降解菌株的筛选及相关降解特性的研究[D]. 镇江:江苏大学, 2017:54-55. JI X. Phthalic acid dibutyl degradation strains screening and the related research of degradation characteristic[D]. Zhenjiang:Jiangsu University, 2017:54

    -55(in Chinese).

    [82]
    [83] DELLA G M, PINTO G, PISTILLO P, et al. Biotransformation of ethinylestradiol by microalgae[J]. Chemosphere, 2008, 70(11):2047-2053.
    [84] 邓欢欢, 葛利云, 吴峰, 等. 三种藻类引发水中17α-乙炔基雌二醇的光降解实验研究[J]. 环境工程学报, 2007,1(6):25-29.

    DENG H H, GE L Y, WU F, et al. Potodegradation of 17α-ethynylestradiol induced by three algae[J]. Chinese Journal of Environmental Engineering,2007,1(6):25-29(in Chinese).

    [85]
    [86] 吴冬冬.藻类强化光降解去除水中双酚A的试验研究[D]. 哈尔滨:哈尔滨工业大学, 2012:48-56. WU D D. Experiment study of photo-degradation of bisphenol A enhanced by algae in water source[J]. Harbin:Harbin Institute of Technology, 2012.:48

    -56(in Chinese).

    [87] 翟洪艳, 孙红文. 藻类对壬基酚微生物降解的影响[J]. 生态环境, 2007,16(3):842-845.

    ZHAI H Y, SUN H W. The effect of algae on biodegradation of nonylphenol by microorganism[J]. Ecology and Environment,2007,16(3):842-845(in Chinese).

    [88] 孙凯峰, 刘莉莉, 孙东, 等. 微藻对壬基酚的响应及去除能效研究[J]. 生态毒理学报, 2016, 11(3):226-236.

    SUN K F, LIU L L, SUN D, et al. Bioremoval of nonylphenol and variable responses of freshwater algae under nonylphenol exposure[J]. Asian Journal of Ecotoxicoliogy,2016, 11(3):226-236(in Chinese).

    [89] 何欢, 付亘,黄斌, 等. 电化学耦合微生物降解17β-雌二醇机制研究//持久性有机污染物论坛2017暨第十二届持久性有机污染物学术研讨会论文集[C]. 中国化学会, 2017:254-255. HE H, FU G, HUANG B, et al. Mechanism of coupling electrochemical and biological methods for 17β-estradiol removal//Chinese Chemical Society, 2017

    :254-255(in Chinese).

    [90] 王久玲. 催化湿式共氧化降解内分泌干扰物双酚A的研究[D]. 长沙:湖南大学, 2016:17-45. WANG J L.Catalytic wet co-oxidation of endocrine disrupting chemical-bisphenol A[D]. Changsha:Hunan University,2016:17

    -45(in Chinese).

    [91] BILAL M, ZHANG J, ZHAO YP, et al. Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A[J]. Biocatalysis and Agricultural Biotechnology, 2019, 19:101174.
    [92] 赵晓晴. 椰壳生物炭固定化TTNP3对水环境中双酚类化合物的去除[D]. 南京:南京大学, 2018:27-50. ZHAO X Q. The removal of bisphenol compounds in water environment by coconut shell biochar immobilized TTNP3[D]. Nanjing:Nanjing University, 2018

    :27-50(in Chinese).

  • 加载中
计量
  • 文章访问数:  2744
  • HTML全文浏览数:  2744
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-13

典型类雌激素的降解方法及其影响因素研究进展

    通讯作者: 彭程, E-mail: cpeng@dhu.edu.cn
  • 1. 东华大学环境科学与工程学院, 国家环境保护纺织工业污染防治工程技术中心, 上海, 201620;
  • 2. 上海污染控制与生态安全研究院, 上海, 200092
基金项目:

国家自然科学基金(41807461),上海市青年科技英才扬帆计划(18YF1401000)和中央高校基本科研业务费专项资金(2232018D3-19)资助.

摘要: 类雌激素是一类新兴污染物,目前在环境中普遍存在,且在极低浓度下可对生物体和环境产生重大威胁.本文重点介绍了酚类、天然类固醇类和邻苯二甲酸酯等3种典型类雌激素的来源、环境分布特征及其生物毒性,综述了典型类雌激素的最新化学降解法(直接光解法和高级氧化法)和生物降解法(菌类降解法和藻类降解法)及其特点.直接光解法操作简便,但降解效果不佳;高级氧化法能快速高效地去除类雌激素,但操作相对复杂、影响因素较多;生物降解法的应用性强,但处理周期长、受环境因素影响大.此外还阐述了类雌激素的降解机理及其影响因素,最后对典型类雌激素的多种高效联合降解技术提出了展望.

English Abstract

参考文献 (92)

目录

/

返回文章
返回