Toxic and priority pollutants under the clean water act:Priority pollutant List[S]. US EPA, 2014.
SCHNEIDER J, GROSSER R, JAYASIMHULU K, et al. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp strain rjgii-135, isolated from a former coal gasification site[J]. Applied and Environmental Microbiology, 1996, 62(1):13-19.
WARD C P, SHARPLESS C M, VALENTINE D L, et al. Partial photochemical oxidation was a dominant fate of Deepwater Horizon surface oil[J]. Environmental Science & Technology, 2018, 52(4):1797-1805.
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
BHATTACHARYYA K, MAJEED J, DEY K K, et al. Effect of Mo-incorporation in the TiO2 lattice:A mechanistic basis for photocatalytic dye degradation[J]. The Journal of Physical Chemistry C, 2014, 118(29):15946-15962.
JIN Y J, DAI Z Y, LIU F, et al. Bactericidal mechanisms of Ag2O/TNBs under both dark and light conditions[J]. Water Research, 2013, 47(5):1837-1847.
CHENG K Y, CAI Z Q, FU J, et al. Synergistic adsorption of Cu(Ⅱ) and photocatalytic degradation of phenanthrene by a jaboticaba-like TiO2/titanate nanotube composite:An experimental and theoretical study[J]. Chemical Engineering Journal, 2019, 358:1155-1165.
YANG Y, LI X J, CHEN J T, et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 163(3):517-522.
CAI Z Q, ZHAO X, WANG T, et al. Reusable platinum-deposited anatase/hexa-titanate nanotubes:Roles of reduced and oxidized platinum on enhanced solar-light-driven photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1):547-555.
LIU W, BORTHWICK A G L, LI X, et al. High photocatalytic and adsorptive performance of anatase-covered titanate nanotubes prepared by wet chemical reaction[J]. Microporous and Mesoporous Materials, 2014, 186:168-175.
XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4, Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B:Environmental, 2018, 229:96-104.
GAO Y, ELDER S A. TEM study of TiO2 nanocrystals with different particle size and shape[J]. Materials Letters, 2000, 44(3-4):228-232.
韩维屏, 尹喜林, 李永战. MoO3与TiO2界面化学分散的研究[J]. 催化学报, 1992, 13(1):19-24. HAN W P, YIN X L, LI Y Z. Study on chemical dispersion of MoO3 and TiO2 interface[J]. Chinese Journal of Catalysis, 1992, 13(1):19-24(in Chinese).
LU M X, SHAO C L, WANG K X, et al. p-MoO3 nanostructures/n-TiO2 nanofiber heterojunctions:Controlled fabrication and enhanced photocatalytic properties[J]. ACS Applied Materials and Interfaces, 2014, 6(12):9004-9012.
SVIRIDOVA T V, SADOVSKAУA L YU, SHCHUKINA E M, et al. Nanoengineered thin-film TiO2/h-MoO3 photocatalysts capable to accumulate photoinduced charge[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 327:44-50.
KIM S, KIM M, HWANG S H, et al. Enhancement of photocatalytic activity of titania-titanate nanotubes by surface modification[J]. Applied Catalysis B:Environmental, 2012, 123-124:391-397.
LIU H, LV T, ZHU C K, et al. Direct bandgap narrowing of TiO2/MoO3 heterostructure composites for enhanced solar-driven photocatalytic activity[J]. Solar Energy Materials and Solar Cells, 2016, 153:1-8.
CHEN Y J, XIAO G, WANG T S, et al. α-MoO3/TiO2 core/shell nanorods:Controlled-synthesis and low-temperature gas sensing properties[J]. Sensors and Actuators B Chemical, 2011, 155(1):270-277.
NAVGIRE M, YELWANDE A, TAYDE D, et al. Photodegradation of molasses by a MoO3-TiO2 nanocrystalline composite material[J]. Chinese Journal of Catalysis, 2012, 33(2-3):261-266.
HU R R, ZHONG S H. Surface structure and photon absorption property of supported coupled semiconductors MoO3-TiO2/SiO2[J]. Chinese Journal of Chemical Physics, 2005, 18(3):389-394.
LI N, LI Y M, ZHOU Y J, et al. Interfacial-charge-transfer-induced photochromism of MoO3@TiO2 crystalline-core amorphous-shell nanorods[J]. Solar Energy Materials and Solar Cells, 2017, 160:116-125.
ZHANG J, XI J H, JI Z G. Mo plus N codoped TiO2 sheets with dominant (001) facets for enhancing visible-light photocatalytic activity[J]. Journal of Materials Chemistry, 2012, 22(34):17700-17708.