Fe2O3/AC脱除煤气中的Hg0
Removal of Hg0 in coal-derived syngas by a Fe2O3/AC catalyst
-
摘要: 利用固定床反应器在模拟煤气条件下研究了活性焦(AC)负载Fe2O3催化剂 (Fe2O3/AC)对气态Hg0的脱除,考察了Fe2O3负载、煅烧温度、空速、Hg0浓度、H2S等对Fe2O3/AC催化剂脱除Hg0的影响及Fe2O3/AC催化剂的再生性能,采用扫描电镜(SEM)表征了Fe2O3在Fe2O3/AC上的分布状态.结果表明,Fe2O3/AC具有较高的脱除Hg0能力,明显高于载体AC,主要缘于Fe2O3对Hg0的催化氧化作用.Fe2O3/AC催化剂上负载的活性组分Fe2O3并不是均匀的分布在载体AC表面上,而是成块簇状分布状态.300 ℃煅烧温度下制备的Fe2O3/AC催化剂脱除Hg0的能力最高.在5000—15000 h-1的空速和21—200 μg·m-3的Hg0浓度范围内,Fe2O3/AC催化剂具有良好的脱除Hg0的能力.H2S与Hg0在Fe2O3活性位上存在竞争吸附、反应会降低Fe2O3/AC对Hg0的脱除能力,但H2S反应生成的单质S和FeSx又可促进Hg0的脱除.脱除Hg0后的Fe2O3/AC催化剂可进行再生,再生后Fe2O3/AC仍具有良好的脱除Hg0的能力.Abstract: An activated coke (AC) supported Fe2O3 catalyst (Fe2O3/AC) was prepared and used to remove Hg0 in a fixed-bed reactor in simulated syngas. The effects of Fe2O3 loading, calcination temperature, space velocity, Hg0 concentration and H2S on Hg0 removal by the catalyst were studied, as well as the regeneration of the used Fe2O3/AC catalyst after Hg0 removal. Scanning electron microscopy (SEM) was used to characterize the distribution of Fe2O3 on the catalyst. The results showed that Fe2O3/AC catalyst had a much higher Hg0 removal capability than that of AC, which was mainly due to the catalytic oxidation of Hg0 by Fe2O3. SEM analysis indicated that Fe2O3 distributed heterogeneously on the surface of AC and was in a cluster-like distribution state. Calcination temperature had a slight effect on Hg0 removal capability and the Fe2O3/AC calcinated at 300 ℃ had the highest Hg0 removal capability. In the space velocity range of 5000—15000 h-1 and Hg0 concentration range of 21—200 μg·m-3, Fe2O3/AC had a high Hg0 removal capability. H2S and Hg0 displayed competitive adsorption and reaction on the active sites of Fe2O3, which could reduce Hg0 removal capability of Fe2O3/AC. Meanwhile, elemental S and FeS<i>x produced by the H2S reaction on Fe2O3/AC could promote Hg0 removal. The used Fe2O3/AC catalyst after Hg0 removal could be regenerated and most of its capability for Hg0 removal could be recovered, which was slightly lower than that of the fresh Fe2O3/AC catalyst but much higher than that of AC.
-
[1] 谢克昌. 煤炭的低碳化转化和利用[J]. 山西能源与节能, 2009, 1:1-3. XIE K C. Coal conversion and use by low carbon way[J]. Shanxi Energy and Conservation, 2009 , 1:1-3(in Chinese).
[2] REED G P, ERGUDENLER A, GRACE J R, et al. Control of gasifier mercury emissions in a hot gas filter:The effect of temperature[J]. Fuel, 2007, 80:623-634. [3] PAVLISH J H, SONDREAL E A, MANN M D, et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology, 2003, 82:89-165. [4] GOLDING G R, KELLY C A, SPARLING R, et al. Evaluation of mercury toxicity as a predictor of mercury bioavailability[J]. Environmental Science & Technology, 2007, 41:5685-5692. [5] WANG J W, SHEN Y Y, DONG Y J, et al. Oxidation and adsorption of gas-phase Hg0 over a V2O5/AC catalyst[J]. RSC Advances, 2016, 6:77553-77557. [6] 李扬, 张军营, 何北惠, 等. 煤热解气化过程中汞的形态转化和释放规律[J]. 工程热物理学报, 2008, 10:1775-1779. LI Y, ZHANG J Y, HE B H, et al. Mercury speciation and volatility during coal pyrolysis and gasification[J]. Journal of Engineering Thermophysics, 2008 , 10:1775-1779(in Chinese).
[7] WU S J, UDDIN M A, SASAOKA E, et al. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents[J]. Fuel, 2006, 85:213-218. [8] PORTZER J W, ALBRITTON J R, ALLEN C C, et al. Development of novel sorbents for mercury control at elevated temperatures in coal-derived syngas:Results of initial screening of candidate materials[J]. Fuel Processing Technology, 2004, 85:621- 630. [9] HAN L N, LV X Y, WANG J C, et al. Palladium-iron bimetal sorbents for simultaneous capture of hydrogen sulfide and mercury from simulated syngas[J]. Energy Fuels, 2012, 26:1638-1644. [10] COULING D J, NGUYEN H V, GREEN W H. Screening of metal oxides and metal sulfides as sorbents for elemental mercury at elevated temperatures[J]. Fuel, 2012, 97:783-795. [11] ZHANG H, ZHAO J T, FANG Y T, et al. Catalytic oxidation and stabilized adsorption of elemental mercury from coal-derived fuel gas[J]. Energy Fuels, 2012, 26:1629-1637. [12] ZHOU J S, QI P, HOU W H, et al. Elemental mercury removal from syngas by nano-ZnO sorbent[J]. Journal of Fuel Chemistry & Technology, 2013, 41(11):1371-1377. [13] HOU W H, ZHOU J S, QI P, et al. Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2[J]. Chemical Engineering Journal, 2014, 241:131-137. [14] HOU W H, ZHOU J S, YU C J, et al. Pd/Al2O3 sorbents for elemental mercury capture at high temperatures in syngas[J]. Industrial & Engineering Chemistry Research, 2014, 53:9909-9914. [15] LI D K, HAN J R, HAN L N, et al. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas[J]. Journal of Environmental Science, 2014, 26:1497-1504. [16] HOU W H, ZHOU J S, YOU S L, et al. Elemental mercury capture from syngas by novel high-temperature sorbent based on Pd-Ce binary metal oxides[J]. Industrial & Engineering Chemistry Research, 2015, 54:3678-3684. [17] SHEN F H, LIU J, DONG Y C, et al. Elemental mercury removal from syngas by porous carbon-supported CuCl2 sorbents[J]. Fuel, 2019, 239:138-144. [18] 王钧伟, 张庆平, 沈园园, 等. 凹凸棒石负载CuO催化剂脱除气态Hg0[J]. 环境化学, 2017, 36(5):1097-1103. WANG J W, ZHANG Q P, SHEN Y Y, et al. Removal of vapor-phase Hg0 over a CuO/PG catalyst[J]. Environmental Chemistry, 2017, 36(5):1097-1103(in Chinese).
[19] WU S, OYA N, OZAKI M, et al. Development of iron oxide sorbents for Hg0 removal from coal derived fuel gas:Sulfidation characteristics of iron oxide sorbents and activity for COS formation during Hg0 removal[J]. Fuel, 2007, 86:2857-2863. [20] WU S, OZAKI M, UDDIN M. Development of iron-based sorbents for removal Hg0 from coal derived fuel gas:Effect of hydrogen chloride[J]. Fuel, 2008, 87:467-474. [21] WANG J C, ZHANG Y P, HAN L N, et al. Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents[J]. Fuel, 2013, 103:73-79. [22] WANG J W, YANG J L, LIU Z Y. Gas-phase elemental mercury capture by a V2O5/AC catalyst[J]. Fuel Processing Technology, 2010, 91(6):676-680. [23] 沈园园. 活性焦负载Fe2O3脱除煤气中Hg0和H2S的研究[D]. 安庆:安庆师范大学, 2017. SHEN Y Y. Removal of Hg0 and H2S from simulated syngas by Fe2 [24] 王钧伟, 杨建丽, 刘振宇. 活性焦负载MnO2对气态Hg0的吸附脱除研究[J]. 环境科学学报, 2012, 32(9):2261-2266. WANG J W, YANG J L, LIU Z Y. Hg0 removal by an activated coke-supported MnO2 catalyst[J]. Acta Scientiae Circumstantiae, 2012, 32(9):2261-2266(in Chinese).
[25] 马建蓉, 刘守军, 刘振宇. 制备条件对Fe/AC脱硫活性的影响[J]. 环境化学, 2002, 21(1):25-31. MA J R, LIU S J, LIU Z Y. Preparation of Fe/AC desulphurizers[J]. Environmental Chemistry, 2002, 21(1):25-31(in Chinese).
[26] MA J R, LIU Z Y, LIU S J, et al. A regenerable Fe/AC desulfurizer for SO2 adsorption at low temperatures[J]. Applied Catalysis B:Environmental, 2003, 45:301-309. [27] 王钧伟, 陈培, 刘瑞卿, 等. 粉煤灰负载Fe2O3脱除气态单质汞的试验研究[J]. 环境科学学报, 2014, 34(12):3152-3157. WANG J W, CHEN P, LIU R Q, et al. Hg0 removal by a fly ash-supported Fe2O3 catalyst[J]. Acta Scientiae Circumstantiae, 2014, 34(12):3152-3157(in Chinese).
[28] 王钧伟, 杨建丽, 刘振宇. V2O5/AC捕获的Hg在再生过程中的释放行为研究[J]. 燃料化学学报, 2011, 39(6):471-475. WANG J W, YANG J L, LIU Z Y. Release behavior of Hg captured on V2O5/AC during the regeneration process[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6):471-475(in Chinese).
[29] 郝海刚, 王胜, 方惠斌, 等. Fe/AC催化脱硫剂再生性能的研究[J]. 煤炭转化, 2011, 34(4):66-71. HAO H G, WANG S, FANG H B, et al. Study on regeneration property of Fe/AC catalytic desulfurizer[J]. Coal Conversion, 2011, 34(4):66-71(in Chinese).
计量
- 文章访问数: 1463
- HTML全文浏览数: 1463
- PDF下载数: 31
- 施引文献: 0