谢克昌. 煤炭的低碳化转化和利用[J]. 山西能源与节能, 2009, 1:1-3. XIE K C. Coal conversion and use by low carbon way[J]. Shanxi Energy and Conservation, 2009
, 1:1-3(in Chinese).
|
REED G P, ERGUDENLER A, GRACE J R, et al. Control of gasifier mercury emissions in a hot gas filter:The effect of temperature[J]. Fuel, 2007, 80:623-634.
|
PAVLISH J H, SONDREAL E A, MANN M D, et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology, 2003, 82:89-165.
|
GOLDING G R, KELLY C A, SPARLING R, et al. Evaluation of mercury toxicity as a predictor of mercury bioavailability[J]. Environmental Science & Technology, 2007, 41:5685-5692.
|
WANG J W, SHEN Y Y, DONG Y J, et al. Oxidation and adsorption of gas-phase Hg0 over a V2O5/AC catalyst[J]. RSC Advances, 2016, 6:77553-77557.
|
李扬, 张军营, 何北惠, 等. 煤热解气化过程中汞的形态转化和释放规律[J]. 工程热物理学报, 2008, 10:1775-1779. LI Y, ZHANG J Y, HE B H, et al. Mercury speciation and volatility during coal pyrolysis and gasification[J]. Journal of Engineering Thermophysics, 2008
, 10:1775-1779(in Chinese).
|
WU S J, UDDIN M A, SASAOKA E, et al. Characteristics of the removal of mercury vapor in coal derived fuel gas over iron oxide sorbents[J]. Fuel, 2006, 85:213-218.
|
PORTZER J W, ALBRITTON J R, ALLEN C C, et al. Development of novel sorbents for mercury control at elevated temperatures in coal-derived syngas:Results of initial screening of candidate materials[J]. Fuel Processing Technology, 2004, 85:621- 630.
|
HAN L N, LV X Y, WANG J C, et al. Palladium-iron bimetal sorbents for simultaneous capture of hydrogen sulfide and mercury from simulated syngas[J]. Energy Fuels, 2012, 26:1638-1644.
|
COULING D J, NGUYEN H V, GREEN W H. Screening of metal oxides and metal sulfides as sorbents for elemental mercury at elevated temperatures[J]. Fuel, 2012, 97:783-795.
|
ZHANG H, ZHAO J T, FANG Y T, et al. Catalytic oxidation and stabilized adsorption of elemental mercury from coal-derived fuel gas[J]. Energy Fuels, 2012, 26:1629-1637.
|
ZHOU J S, QI P, HOU W H, et al. Elemental mercury removal from syngas by nano-ZnO sorbent[J]. Journal of Fuel Chemistry & Technology, 2013, 41(11):1371-1377.
|
HOU W H, ZHOU J S, QI P, et al. Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2[J]. Chemical Engineering Journal, 2014, 241:131-137.
|
HOU W H, ZHOU J S, YU C J, et al. Pd/Al2O3 sorbents for elemental mercury capture at high temperatures in syngas[J]. Industrial & Engineering Chemistry Research, 2014, 53:9909-9914.
|
LI D K, HAN J R, HAN L N, et al. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas[J]. Journal of Environmental Science, 2014, 26:1497-1504.
|
HOU W H, ZHOU J S, YOU S L, et al. Elemental mercury capture from syngas by novel high-temperature sorbent based on Pd-Ce binary metal oxides[J]. Industrial & Engineering Chemistry Research, 2015, 54:3678-3684.
|
SHEN F H, LIU J, DONG Y C, et al. Elemental mercury removal from syngas by porous carbon-supported CuCl2 sorbents[J]. Fuel, 2019, 239:138-144.
|
王钧伟, 张庆平, 沈园园, 等. 凹凸棒石负载CuO催化剂脱除气态Hg0[J]. 环境化学, 2017, 36(5):1097-1103.
WANG J W, ZHANG Q P, SHEN Y Y, et al. Removal of vapor-phase Hg0 over a CuO/PG catalyst[J]. Environmental Chemistry, 2017, 36(5):1097-1103(in Chinese).
|
WU S, OYA N, OZAKI M, et al. Development of iron oxide sorbents for Hg0 removal from coal derived fuel gas:Sulfidation characteristics of iron oxide sorbents and activity for COS formation during Hg0 removal[J]. Fuel, 2007, 86:2857-2863.
|
WU S, OZAKI M, UDDIN M. Development of iron-based sorbents for removal Hg0 from coal derived fuel gas:Effect of hydrogen chloride[J]. Fuel, 2008, 87:467-474.
|
WANG J C, ZHANG Y P, HAN L N, et al. Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents[J]. Fuel, 2013, 103:73-79.
|
WANG J W, YANG J L, LIU Z Y. Gas-phase elemental mercury capture by a V2O5/AC catalyst[J]. Fuel Processing Technology, 2010, 91(6):676-680.
|
沈园园. 活性焦负载Fe2O3脱除煤气中Hg0和H2S的研究[D]. 安庆:安庆师范大学, 2017. SHEN Y Y. Removal of Hg0 and H2S from simulated syngas by Fe2
O3/AC[D]. Anqing:Anqing Normal University, 2017(in Chinese).
|
王钧伟, 杨建丽, 刘振宇. 活性焦负载MnO2对气态Hg0的吸附脱除研究[J]. 环境科学学报, 2012, 32(9):2261-2266.
WANG J W, YANG J L, LIU Z Y. Hg0 removal by an activated coke-supported MnO2 catalyst[J]. Acta Scientiae Circumstantiae, 2012, 32(9):2261-2266(in Chinese).
|
马建蓉, 刘守军, 刘振宇. 制备条件对Fe/AC脱硫活性的影响[J]. 环境化学, 2002, 21(1):25-31.
MA J R, LIU S J, LIU Z Y. Preparation of Fe/AC desulphurizers[J]. Environmental Chemistry, 2002, 21(1):25-31(in Chinese).
|
MA J R, LIU Z Y, LIU S J, et al. A regenerable Fe/AC desulfurizer for SO2 adsorption at low temperatures[J]. Applied Catalysis B:Environmental, 2003, 45:301-309.
|
王钧伟, 陈培, 刘瑞卿, 等. 粉煤灰负载Fe2O3脱除气态单质汞的试验研究[J]. 环境科学学报, 2014, 34(12):3152-3157.
WANG J W, CHEN P, LIU R Q, et al. Hg0 removal by a fly ash-supported Fe2O3 catalyst[J]. Acta Scientiae Circumstantiae, 2014, 34(12):3152-3157(in Chinese).
|
王钧伟, 杨建丽, 刘振宇. V2O5/AC捕获的Hg在再生过程中的释放行为研究[J]. 燃料化学学报, 2011, 39(6):471-475.
WANG J W, YANG J L, LIU Z Y. Release behavior of Hg captured on V2O5/AC during the regeneration process[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6):471-475(in Chinese).
|
郝海刚, 王胜, 方惠斌, 等. Fe/AC催化脱硫剂再生性能的研究[J]. 煤炭转化, 2011, 34(4):66-71.
HAO H G, WANG S, FANG H B, et al. Study on regeneration property of Fe/AC catalytic desulfurizer[J]. Coal Conversion, 2011, 34(4):66-71(in Chinese).
|