Cd胁迫对续断菊Cd吸收分配及有机酸代谢的影响
Effects of Cd stress on uptake and distribution of Cd and the low molecular weight organic acid metabolism in Sonchus asper L. Hill.
-
摘要: 通过水培试验,研究了Cd在续断菊(Sonchus asper L.Hill.)体内的亚细胞分布、化学形态,Cd对续断菊地上部和根部有机酸含量的影响,以及根系分泌低分子有机酸对Cd胁迫的响应.结果表明:(1)续断菊根部和地上部的Cd含量随Cd处理浓度增加而显著增加;(2)Cd在续断菊体内的化学提取形态分布为:NaCl提取态(FNaCl) > HAC提取态(FHAC) > HCl提取态(FHCl) > 残渣态(FR) > 去离子水提取态(FW) > 乙醇提取态(FE);(3)续断菊体内的Cd主要分布在细胞壁中,占总Cd含量的36%-47%,且随着Cd浓度的升高,细胞壁中的分布量增加;其次是细胞核中,占总含量的20%-33%;(4)续断菊体内低分子有机酸含量大小为:酒石酸>苹果酸>柠檬酸>乙酸,酒石酸占有机酸总量的68%-96%,植株地上部和根部Cd含量均与体内苹果酸和柠檬酸含量显著正相关,相关系数为0.993和0.994(PPP<0.05).根系分泌酒石酸和苹果酸促进了续断菊对Cd的吸收,续断菊体内的苹果酸和柠檬酸参与Cd的吸收、运输、积累,从而缓解了Cd的危害;同时,细胞壁固持和活性较强化学形态的减少是续断菊耐Cd胁迫的主要机制.Abstract: A hydroponic experiment was applied to explore the subcellular distribution and chemical forms of Cd in hyperaccumulator Sonchus asper L. Hill. (S. asper), the effects of Cd on the contents of organic acids in shoots and roots, and the response of root exudates to Cd tolerance. The results showed that Cd contents in the shoot and root of S. asper increased with the increase of Cd concentrations in solution. The contents of Cd chemical forms upon Cd addition followed the order of NaCl extractable fraction (FNaCl) > HAC extractable fraction (FHAC) > HCl extractable fraction (FHCl) > residual fraction(FR) > water extractable fraction (FW) > ethanol-extractable fraction (FE). 36%-47% and 20%-33% of total Cd distributed in cell wall and nucleus, respectively. The subcellular distribution of Cd was mainly in cell wall and the percentage of Cd in cell wall increased with the increase of Cd concentration. The contents of organic acids in S. asper followed the tendency of tartaric acid > malic acid > citric acid > acetic acid. Tartaric acid was dominant, accounting for 68%-96% of total organic acids. Significantly positive correlations between shoot Cd and malic acid and citric acid were observed with correlation coefficients 0.993(PPPPPPS. asper facilitated the absorption and accumulation of Cd, and malic acid and citric acid participated in Cd absorption, transport and accumulation, which reduced the toxicity of Cd. At the same time, cell wall binding and reduction of total percentage in higher active chemical forms are the main tolerance mechanisms for Cd in S. asper.
-
-
[1] 秦丽,祖艳群,李元,等. 会泽铅锌矿渣堆周边7种野生植物重金属含量及累积特征研究[J]. 农业环境科学学报, 2013, 32(8):1558-1563. QIN L, ZU Y Q, LI Y, et, al. Heavy metal contents and accumulation characteristic of seven wild plants from the slagheap surrounding of Huize lead-zinc tailings[J]. Journal of Agro-Environment Science, 2013, 32(8):1558-1563(in Chinese).
[2] 陈秀玲, 张磊. 小麦/花生不同间作方式对花生吸收积累Cd的影响[J]. 环境化学, 2014, 33(9):1469-1475. CHEN X L, ZHANG L. Influence on cadmium uptake by peanut of wheat/peanut intercropping modes[J]. Environmental Chemistry, 2014, 33(9):1469-1475(in Chinese).
[3] ZU Y Q,LI Y,CHEN J J. et al. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China[J]. Environment International, 2005, 31(5):755-762. [4] GAO B, ZHOU H, LIANG X, et al. Cd isotopes as a potential source tracer of metal pollution in river sediments[J]. Environmental pollution,2013, 181:340-343. [5] 王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015, 35(23):7921-7929. WANG X J, WANG W B, YANG L, et al.Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant[J].Acta Ecologica Sinica, 2015,35(23):7921-7929(in Chinese).
[6] WANG P, DENG X, HUANG Y, et al. Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings[J]. Environmental Science and Pollution Research, 2015, 22(24):19584-19595. [7] ZHAO Y, WU J, SHANG D, et al. Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis[J]. Food Chemistry, 2015, 168:48-54. [8] LAI H Y. Subcellular distribution and chemical forms of cadmium in impatiens walleriana in relation to its phytoextraction potential[J]. Chemosphere, 2015, 138:370-376. [9] 于辉, 杨中艺, 杨知建, 等. 不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布[J]. 应用生态学报, 2008, 19(10):2221-2226. YU H, YANG Z Y, YANG Z J, et al. Chemical forms and subcellular and molecular distribution of Cd in two Cd-accumulation rice genotypies[J]. Chinese Journal of Applied Ecology, 2008, 19(10):2221-2226(in Chinese).
[10] MA J F, UENO D, ZHAO F J, et al. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens[J]. Planta, 2005, 220(5):731-736. [11] [12] [13] KRAME U,PICKERING I J,PRINCE R C,et al. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species[J].Plant Physiol,2000,122:1343-1353. [14] SHANTI S, SHARMAL, KARL J D. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress[J]. Journal of Experimental Botany. 2006, 57(4):711-726. [15] LU H L, YAN C L, LIU J C. Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere[J]. Environmental and Experimental Botany, 2007, 61(2):159-166. [16] LAKSHMANAN V, KITTO S L, CAPLAN J L, et al. Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis[J]. Plant Physiol, 2012, 160(3):1642-1661. [17] TONG B, SUN T H, SUN L N. Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L. and nonhyperaccumulator Solanum lycopersicum L.[J]. African Journal of Biotechnology, 2011, 10(75):17180-17185. [18] 秦丽, 祖艳群, 李元. Cd对超累积植物续断菊生长生理的影响[J]. 农业环境科学学报, 2010, 29(B10):53-57. QIN L, ZU Y Q, LI Y. Effects of Cd on the physiological characteristics and growth of the Sonchus asper (L.) Hill.[J]. Journal of Agro-Environment Science, 2010, 29(B10):53-57(in Chinese).
[19] 谭建波,陈兴,郭先华,等. 续断菊与玉米间作系统不同植物部位Cd、Pb分配特征[J]. 生态环境学报2015, 24(4):700-707. TAN J B, CHEN X, GUO X H, et al. Distribution characteristics of Pb and Cd in different parts of Sonchus asper and Zea mays in an intercropping system[J]. Ecology and Environmental Sciences, 2015, 24(4):700-707(in Chinese).
[20] WEIGLE H J,JAGER H J.Subcellular distribution and chemical form of cadmium in bean[J].Plant Physiology,1980,65:480-482. [21] XU Q S, MIN H L, CAI S J, et al. Subcellular distribution and toxicity of cadmium in Potamogetoncrispus L.[J]. Chemosphere, 2012, 89(1):114-120. [22] KUANG Y W, WEN D Z, ZHONG C W, et al. Root exudates and their roles in phytoremediation[J]. Acta Phytoecologica Sinica, 2003, 27(5):709-717 [23] 周小勇,仇荣亮,胡鹏杰等.镉和铅对长柔毛委陵菜体内锌的亚细胞分布和化学形态的影响[J].环境科学,2008, 29(7):2028-2036. ZHOU X Y, QIU R L, HU P J, et al. Effects of cadmium and lead on subcellular distribution and chemical form of zinc in Potentilla griffithii Var. velutina[J]. Environmental science, 2008, 29(7):2028-2036(in Chinese).
[24] 白雪,陈亚慧,耿凯,等. 镉在三色堇中的积累及亚细胞与化学形态分布[J].环境科学学报,2014, 34(6):1600-1605. BAI X, CHEN Y H, GENG K, et al. Accumulation, subcellular distribution and chemical forms of cadmium in Vionlarricolor L.[J]. Acta Science Circumstantiae, 2014, 34(6):1600-1605(in Chinese).
[25] ZU Y Q, LI Y, MIN H, et al. Subcellular distribution and chemical form of Pb in hyperaccumulator Arenaria orbiculata and response of root exudates to Pb addition[J]. Frontiers of Environmental Science & Engineering, 2015, 9:250-258. [26] 许嘉琳,鲍子平,杨居荣,等.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报,1991,2(3):244-248. XU J L, BAO Z P, YANG J R, et al. Chemical form of Pb,Cd and Cu in crops[J]. Chinese Journal of Applied Ecology, 1991,2(3):244-248(in Chinese).
[27] BIDWELL S D, CRAWFORD S A, WOODROW E, et al.Subcellar localization of Ni in the hyperaccumulator Hybanuthus floribundus(Lindley) F.Muell[J].Plant, Cell and Environment, 2004, 27:705-716. [28] VAZQUEZ S, FERNANDEZ P M, SANCHEZ P B, et al. Subcellular compartmentalisation of cadmium in white lupins determined by energy-dispersive X-ray microanalysis[J]. Plant Physiol, 2007, 164(9):1235-1238. [29] COSIO C, MARTINOIA E, KELLER C.Hyperaccumulation of cadmium and zinc in Thlaspi caeratescens and Arabidopsis halleri at the leaf cellular level[J].Plant Physiology,2004,134:716-725. [30] ALLEN D L, JARRELL W M. Proton and copper adsorption to maize and soybean root cell walls[J]. Plants Physiology, 1989, 89(3):823-832. [31] MATHYS W.The role of malate,oxalate and mustard oil glucosides in the evolution of zinc resistance in herbage plants[J].Physiol Plant,1977,40:130-136. [32] 秦丽, 李元, 祖艳群等. 镉胁迫对续断菊(Sonchus asper L. Hill.)根系分泌物的影响[J].生态环境学报,2012(3):540-544. QIN L, LI Y, ZU Y Q, et al. Effects of Cd Contamination on the Root Exudates of Sonchus asper L. Hill.[J]. Ecology and Environmental Sciences, 2012 (3):540-544(in Chinese).
[33] XIE X Y, WEISS D J, WENG B S, et al. The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata(S., L.) Yong) roots[J]. Environmental Science and Pollution Research, 2012, 19:1-12. [34] HAMMER D,KELLER C. Change in the rhizosphere of metal-accumulating plants evidenced by chemical extractants[J]. Journal of Environmental Quality, 2002, 31(5):1561-1569. -

计量
- 文章访问数: 1244
- HTML全文浏览数: 1160
- PDF下载数: 478
- 施引文献: 0