聚苯乙烯纳塑料诱导Caco-2细胞氧化应激和线粒体损伤的研究

赵乾秀, 白淼, 白宇超, 曲绍娟, 张灿, 张传福. 聚苯乙烯纳塑料诱导Caco-2细胞氧化应激和线粒体损伤的研究[J]. 生态毒理学报, 2024, 19(4): 284-293. doi: 10.7524/AJE.1673-5897.20240205002
引用本文: 赵乾秀, 白淼, 白宇超, 曲绍娟, 张灿, 张传福. 聚苯乙烯纳塑料诱导Caco-2细胞氧化应激和线粒体损伤的研究[J]. 生态毒理学报, 2024, 19(4): 284-293. doi: 10.7524/AJE.1673-5897.20240205002
Zhao Qianxiu, Bai Miao, Bai Yuchao, Qu Shaojuan, Zhang Can, Zhang Chuanfu. Polystyrene Nanoplastics Induce Oxidative Stress and Mitochondrial Damage in Caco-2 Cells[J]. Asian journal of ecotoxicology, 2024, 19(4): 284-293. doi: 10.7524/AJE.1673-5897.20240205002
Citation: Zhao Qianxiu, Bai Miao, Bai Yuchao, Qu Shaojuan, Zhang Can, Zhang Chuanfu. Polystyrene Nanoplastics Induce Oxidative Stress and Mitochondrial Damage in Caco-2 Cells[J]. Asian journal of ecotoxicology, 2024, 19(4): 284-293. doi: 10.7524/AJE.1673-5897.20240205002

聚苯乙烯纳塑料诱导Caco-2细胞氧化应激和线粒体损伤的研究

    作者简介: 赵乾秀(1995-),女,硕士研究生,研究方向为微塑料的毒理机制,E-mail:Caliszhao@163.com
    通讯作者: 张灿(1975-),女,博士,研究员,主要研究方向为环境科学。E-mail:zhangcancqu@163.com;  张传福(1979-),男,博士,研究员,主要研究方向为环境毒理学。E-mail:hnzcf@126.com
  • 基金项目:

    国家重点研发计划课题(2023YFF0614204);国家自然科学基金项目(52070193);北京市自然科学基金项目(8192053)

  • 中图分类号: X171.5

Polystyrene Nanoplastics Induce Oxidative Stress and Mitochondrial Damage in Caco-2 Cells

    Corresponding authors: Zhang Can ;  Zhang Chuanfu
  • Fund Project:
  • 摘要: 微/纳米塑料的潜在毒理效应及健康风险引起广泛关注。本研究以人结直肠腺癌细胞(Caco-2)为模型,研究聚苯乙烯纳米塑料(polystyrene nanoparticles, PS-NPs)的细胞毒性,从氧化应激和线粒体损伤角度探讨PS-NPs肠道毒性机制。结果表明PS-NPs暴露导致细胞形态改变,细胞活力下降,乳酸脱氢酶释放增加,确定其最低效应浓度是50 μg·mL-1。随着PS-NPs暴露浓度增加,细胞活性氧(reactive oxygen species, ROS)含量和丙二醛水平升高,线粒体膜电位水平降低、Ca2+超载、线粒体膜通透性转换孔开放、二磷酸腺苷/三磷酸腺苷比率(ADP/ATP)上升,最终细胞凋亡率增加。PS-NPs暴露浓度为200 μg·mL-1时,ROS含量升高至对照组的3.85倍;线粒体去极化程度降低至对照组的0.63倍;细胞凋亡率达到28.90%(P<0.01)。PS-NPs通过诱导细胞ROS生成,产生氧化应激,过量的ROS会对线粒体造成损伤,最终导致细胞凋亡率升高,因此氧化应激和线粒体损伤是PS-NPs引起细胞毒性的关键机制。本研究结果将为PS-NPs的肠道毒理效应和健康风险评估提供基础数据和科学依据。
  • 加载中
  • Gigault J, Halle A T, Baudrimont M, et al. Current opinion: What is a nanoplastic? [J]. Environmental Pollution, 2018, 235: 1030-1034
    Pitt J A, Kozal J S, Jayasundara N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2018, 194: 185-194
    Sun Q, Ren S Y, Ni H G. Incidence of microplastics in personal care products: An appreciable part of plastic pollution [J]. The Science of the Total Environment, 2020, 742: 140218
    Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta [J]. Environment International, 2021, 146: 106274
    Amato-Lourenço L F, Carvalho-Oliveira R, Júnior G R, et al. Presence of airborne microplastics in humanlung tissue [J]. Journal of Hazardous Materials, 2021, 416: 126124
    Wang Q Q, Bai J L, Ning B A, et al. Effects of bisphenol A and nanoscale and microscale polystyrene plastic exposure on particle uptake and toxicity in human Caco-2 cells [J]. Chemosphere, 2020, 254: 126788
    Chen Q Q, Gundlach M, Yang S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity [J]. The Science of the Total Environment, 2017, 584/585: 1022-1031
    Wang X X, Ren X M, He H, et al. Cytotoxicity and pro-inflammatory effect of polystyrene nano-plastic and micro-plastic onRAW264.7 cells [J]. Toxicology, 2023, 484: 153391
    Choi J O, Jitsunari F, Asakawa F, et al. Migration of styrene monomer, dimers and trimers from polystyrene to food simulants [J]. Food Additives and Contaminants, 2005, 22(7): 693-699
    Rabie S T, Mahran A M, Kamel E M, et al. Photodegradation of polystyrene stabilized with uracil derivatives [J]. Journal of Applied Sciences Research, 2008, 4(12): 2018-2026
    Xu D H, Ma Y H, Han X D, et al. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells [J]. Journal of Hazardous Materials, 2021, 417: 126092
    Windsor F M, Tilley R M, Tyler C R, et al. Microplastic ingestion by riverine macroinvertebrates [J]. The Science of the Total Environment, 2019, 646: 68-74
    Zhang Y X, Wang M, Yang L Y, et al. Bioaccumulation of differently-sized polystyrene nanoplastics by human lung and intestine cells [J]. Journal of Hazardous Materials, 2022, 439: 129585
    Hillery A M, Jani P U, Florence A T. Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles [J]. Journal of Drug Targeting, 1994, 2(2): 151-156
    Ibrahim Y S, Tuan Anuar S, Azmi A A, et al. Detection of microplastics in human colectomy specimens [J]. JGH Open: An Open Access Journal of Gastroenterology and Hepatology, 2020, 5(1): 116-121
    Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. The Science of the Total Environment, 2019, 649: 308-317
    Li B Q, Ding Y F, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice [J]. Chemosphere, 2020, 244: 125492
    Wen X B, Tang L X, Zhong R Q, et al. Role of mitophagy in regulating intestinal oxidative damage [J]. Antioxidants, 2023, 12(2): 480
    杨青, 袁静静, 石海, 等. 同型半胱氨酸影响Caco-2细胞线粒体功能的实验研究[J]. 安徽医科大学学报, 2017, 52(6): 810-814

    Yang Q, Yuan J J, Shi H, et al. Homocysteine induces mitochondrial dysfunction in Caco-2 cells [J]. Acta Universitatis Medicinalis Anhui, 2017, 52(6): 810-814 (in Chinese)

    Zhang Y, Yin K, Wang D X, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κ B-NLRP3-GSDMD and AMPK-PGC-1α axes [J]. The Science of the Total Environment, 2022, 840: 156727
    Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer [J]. The Biochemical Journal, 1996, 313(Pt 1): 17-29
    Han S W, Ryu K Y. Increased clearance of non-biodegradable polystyrene nanoplastics by exocytosis through inhibition of retrograde intracellular transport [J]. Journal of Hazardous Materials, 2022, 439: 129576
    Zhu M T, Wang B, Wang Y, et al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis [J]. Toxicology Letters, 2011, 203(2): 162-171
    Premanathan M, Karthikeyan K, Jeyasubramanian K, et al. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation [J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7(2): 184-192
    火传益, 张慧, 倪玲, 等. 亚低温对聚苯乙烯微塑料所致血管内皮细胞损伤的影响[J]. 环境卫生学杂志, 2023, 13(4): 250-256

    Huo C Y, Zhang H, Ni L, et al. Effects of mild hypothermia on vascular endothelial cell injury induced by polystyrene microplastics [J]. Journal of Environmental Hygiene, 2023, 13(4): 250-256 (in Chinese)

    Xie X M, Deng T, Duan J F, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110133
    Wang L X, Zheng M M, Zhang S P, et al. Roles of mtDNA damage and disordered Ca2+ homeostasis in the joint toxicities of cadmium and BDE209 [J]. Ecotoxicology and Environmental Safety, 2019, 186: 109767
    Liu T, Hou B L, Wang Z P, et al. Polystyrene microplastics induce mitochondrial damage in mouse GC-2 cells [J]. Ecotoxicology and Environmental Safety, 2022, 237: 113520
    Bhattacharjee S, Ershov D, Fytianos K, et al. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics [J]. Particle and Fibre Toxicology, 2012, 9: 11
    Igney F H, Krammer P H. Death and anti-death: Tumour resistance to apoptosis [J]. Nature Reviews Cancer, 2002, 2(4): 277-288
    Gong N Q, Ma X W, Ye X X, et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment [J]. Nature Nanotechnology, 2019, 14(4): 379-387
    Zemskov E A, Lu Q, Ornatowski W, et al. Biomechanical forces and oxidative stress: Implications for pulmonary vascular disease [J]. Antioxidants & Redox Signaling, 2019, 31(12): 819-842
    Moehlman A T, Youle R J. Mitochondrial quality control and restraining innate immunity [J]. Annual Review of Cell and Developmental Biology, 2020, 36: 265-289
    Umamaheswari S, Priyadarshinee S, Kadirvelu K, et al. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish [J]. Chemico-Biological Interactions, 2021, 345: 109550
    Liang B X, Zhong Y Z, Huang Y J, et al. Underestimated health risks: Polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis [J]. Particle and Fibre Toxicology, 2021, 18(1): 20
    Wang Y, Zhang M, Li Z P, et al. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells [J]. Chemosphere, 2019, 218: 577-588
    Chiu H W, Xia T, Lee Y H, et al. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress [J]. Nanoscale, 2015, 7(2): 736-746
    Qin J, Xia P F, Yuan X Z, et al. Chlorine disinfection elevates the toxicity of polystyrene microplastics to human cells by inducing mitochondria-dependent apoptosis [J]. Journal of Hazardous Materials, 2022, 425: 127842
  • 加载中
计量
  • 文章访问数:  1610
  • HTML全文浏览数:  1610
  • PDF下载数:  151
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-02-05
赵乾秀, 白淼, 白宇超, 曲绍娟, 张灿, 张传福. 聚苯乙烯纳塑料诱导Caco-2细胞氧化应激和线粒体损伤的研究[J]. 生态毒理学报, 2024, 19(4): 284-293. doi: 10.7524/AJE.1673-5897.20240205002
引用本文: 赵乾秀, 白淼, 白宇超, 曲绍娟, 张灿, 张传福. 聚苯乙烯纳塑料诱导Caco-2细胞氧化应激和线粒体损伤的研究[J]. 生态毒理学报, 2024, 19(4): 284-293. doi: 10.7524/AJE.1673-5897.20240205002
Zhao Qianxiu, Bai Miao, Bai Yuchao, Qu Shaojuan, Zhang Can, Zhang Chuanfu. Polystyrene Nanoplastics Induce Oxidative Stress and Mitochondrial Damage in Caco-2 Cells[J]. Asian journal of ecotoxicology, 2024, 19(4): 284-293. doi: 10.7524/AJE.1673-5897.20240205002
Citation: Zhao Qianxiu, Bai Miao, Bai Yuchao, Qu Shaojuan, Zhang Can, Zhang Chuanfu. Polystyrene Nanoplastics Induce Oxidative Stress and Mitochondrial Damage in Caco-2 Cells[J]. Asian journal of ecotoxicology, 2024, 19(4): 284-293. doi: 10.7524/AJE.1673-5897.20240205002

聚苯乙烯纳塑料诱导Caco-2细胞氧化应激和线粒体损伤的研究

    通讯作者: 张灿(1975-),女,博士,研究员,主要研究方向为环境科学。E-mail:zhangcancqu@163.com;  张传福(1979-),男,博士,研究员,主要研究方向为环境毒理学。E-mail:hnzcf@126.com
    作者简介: 赵乾秀(1995-),女,硕士研究生,研究方向为微塑料的毒理机制,E-mail:Caliszhao@163.com
  • 1. 安徽医科大学公共卫生学院, 合肥 230032;
  • 2. 中国人民解放军疾病预防控制中心, 北京 100071;
  • 3. 中国检验检疫科学研究院卫生检验与检疫研究所, 北京 100176
基金项目:

国家重点研发计划课题(2023YFF0614204);国家自然科学基金项目(52070193);北京市自然科学基金项目(8192053)

摘要: 微/纳米塑料的潜在毒理效应及健康风险引起广泛关注。本研究以人结直肠腺癌细胞(Caco-2)为模型,研究聚苯乙烯纳米塑料(polystyrene nanoparticles, PS-NPs)的细胞毒性,从氧化应激和线粒体损伤角度探讨PS-NPs肠道毒性机制。结果表明PS-NPs暴露导致细胞形态改变,细胞活力下降,乳酸脱氢酶释放增加,确定其最低效应浓度是50 μg·mL-1。随着PS-NPs暴露浓度增加,细胞活性氧(reactive oxygen species, ROS)含量和丙二醛水平升高,线粒体膜电位水平降低、Ca2+超载、线粒体膜通透性转换孔开放、二磷酸腺苷/三磷酸腺苷比率(ADP/ATP)上升,最终细胞凋亡率增加。PS-NPs暴露浓度为200 μg·mL-1时,ROS含量升高至对照组的3.85倍;线粒体去极化程度降低至对照组的0.63倍;细胞凋亡率达到28.90%(P<0.01)。PS-NPs通过诱导细胞ROS生成,产生氧化应激,过量的ROS会对线粒体造成损伤,最终导致细胞凋亡率升高,因此氧化应激和线粒体损伤是PS-NPs引起细胞毒性的关键机制。本研究结果将为PS-NPs的肠道毒理效应和健康风险评估提供基础数据和科学依据。

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回