全氟辛酸(PFOA)对菲律宾蛤仔血淋巴的毒性效应研究

龚秀琼, 周扬, 李风铃, 郭萌萌, 耿倩倩, 谭志军, 姚琳, 江艳华, 曲梦. 全氟辛酸(PFOA)对菲律宾蛤仔血淋巴的毒性效应研究[J]. 生态毒理学报, 2024, 19(4): 270-283. doi: 10.7524/AJE.1673-5897.20240228003
引用本文: 龚秀琼, 周扬, 李风铃, 郭萌萌, 耿倩倩, 谭志军, 姚琳, 江艳华, 曲梦. 全氟辛酸(PFOA)对菲律宾蛤仔血淋巴的毒性效应研究[J]. 生态毒理学报, 2024, 19(4): 270-283. doi: 10.7524/AJE.1673-5897.20240228003
Gong Xiuqiong, Zhou Yang, Li Fengling, Guo Mengmeng, Geng Qianqian, Tan Zhijun, Yao Lin, Jiang Yanhua, Qu Meng. Toxicity Effects of Perflurooctanoic Acid (PFOA) on Ruditapes philippinarum Hemocytes[J]. Asian journal of ecotoxicology, 2024, 19(4): 270-283. doi: 10.7524/AJE.1673-5897.20240228003
Citation: Gong Xiuqiong, Zhou Yang, Li Fengling, Guo Mengmeng, Geng Qianqian, Tan Zhijun, Yao Lin, Jiang Yanhua, Qu Meng. Toxicity Effects of Perflurooctanoic Acid (PFOA) on Ruditapes philippinarum Hemocytes[J]. Asian journal of ecotoxicology, 2024, 19(4): 270-283. doi: 10.7524/AJE.1673-5897.20240228003

全氟辛酸(PFOA)对菲律宾蛤仔血淋巴的毒性效应研究

    作者简介: 龚秀琼(1999-),女,硕士,研究方向为生态毒理学,E-mail:2324601201@qq.com
    通讯作者: 李风铃(1980-),女,博士,副研究员,主要研究方向为新污染物的毒理学评价。E-mail:lifl@ysfri.ac.cn; 
  • 基金项目:

    现代农业产业技术体系专项(CARS-49);中国水产科学研究院基本科研业务费项目(2020TD71)

  • 中图分类号: X171.5

Toxicity Effects of Perflurooctanoic Acid (PFOA) on Ruditapes philippinarum Hemocytes

    Corresponding author: Li Fengling, lifl@ysfri.ac.cn
  • Fund Project:
  • 摘要: 全氟辛酸(perfluorooctanoic acid, PFOA)是海洋环境中的一类新兴污染物。双壳贝类常被用于评估污染物毒性和监测生态环境,是海洋生态系统的重要指示物种。血细胞是双壳贝类免疫系统的主要组成部分,其相关指标的变化对评估PFOA的污染状况具有重要意义。本研究测量了PFOA在菲律宾蛤仔(Ruditapes philippinarum)血淋巴细胞中的生物蓄积含量和免疫相关指标,包括血细胞总数(total hemocyte count, THC)、细胞活性、细胞凋亡、吞噬活性、活性氧(reactive oxygen species, ROS)和非特异性酯酶活性,从免疫器官、免疫功能以及免疫因子3个方面系统评估PFOA对贝类的免疫毒性。结果显示:PFOA在血淋巴中大量蓄积,实验第14天时PFOA在3个处理组中的含量分别为(122.5±5.35)、(149.38±0.52)、(157.23±4.65) ng·mL-1。清水恢复7 d后,各处理组中PFOA的蓄积量虽有所下降,但仍分别高达(3.33±0.16)、(5.42±0.08)、(6.20±0.20) ng·mL-1。进一步研究发现,PFOA的胁迫可引发蛤仔血细胞各生理指标及免疫功能的显著变化。PFOA以浓度依赖性方式缩减了蛤仔血细胞总数,改变了血细胞组成比例,细胞活力及吞噬活性明显下降,ROS大量生成,凋亡率大幅增加,非特异性酯酶活性明显增强。且清水恢复7 d各指标仍未能恢复到对照组水平。此外,在分子水平上,PFOA的暴露亦显著改变了免疫相关基因的表达。可见,PFOA的胁迫可对菲律宾蛤仔产生明显的免疫毒性效应。该研究为揭示PFOA对海洋生态系统的潜在风险和筛选海洋中全氟及多氟烷基物质(PFASs)污染的生物指示因子提供一定的科学依据。
  • 加载中
  • Andrews D Q, Naidenko O V. Population-wide exposure to per- and polyfluoroalkyl substances from drinking water in the United States [J]. Environmental Science & Technology Letters, 2020, 7(12): 931-936
    Gebreab K Y, Eeza M N H, Bai T Y, et al. Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances [J]. Environmental Pollution, 2020, 265(Pt A): 114928
    Zhang X Q, Sun L P, Zhao D X, et al. Adenosine and L-proline can possibly hinder Chinese Sacbrood virus infection in honey bees via immune modulation [J]. Virology, 2022, 573: 29-38
    Hansen K J, Johnson H O, Eldridge J S, et al. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River [J]. Environmental Science & Technology, 2002, 36(8): 1681-1685
    An W K, Duan L, Zhang Y Z, et al. Occurrence, spatiotemporal distribution, seasonal and annual variation, and source apportionment of poly- and perfluoroalkyl substances (PFASs) in the northwest of Tai Lake Basin, China [J]. Journal of Hazardous Materials, 2021, 416: 125784
    Casas G, Iriarte J, D’Agostino L A, et al. Inputs, amplification and sinks of perfluoroalkyl substances at coastal Antarctica [J]. Environmental Pollution, 2023, 338: 122608
    Gobelius L, Hedlund J, Dürig W, et al. Per- and polyfluoroalkyl substances in Swedish groundwater and surface water: Implications for environmental quality standards and drinking water guidelines [J]. Environmental Science & Technology, 2018, 52(7): 4340-4349
    Qiao X C, Jiao L X, Zhang X X, et al. Contamination profiles and risk assessment of per- and polyfluoroalkyl substances in groundwater in China [J]. Environmental Monitoring and Assessment, 2020, 192(2): 76
    Skutlarek D, Exner M, Färber H. Perfluorinated surfactants in surface and drinking waters [J]. Environmental Science and Pollution Research International, 2006, 13(5): 299-307
    Gan C D, Gan Z W, Cui S F, et al. Agricultural activities impact on soil and sediment fluorine and perfluorinated compounds in an endemic fluorosis area [J]. The Science of the Total Environment, 2021, 771: 144809
    Abbott B D, Wood C R, Watkins A M, et al. Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues [J]. Reproductive Toxicology, 2012, 33(4): 491-505
    Nie L T, Yang Z W, Qin X, et al. Vitamin C protects the spleen against PFOA-induced immunotoxicity [J]. The Science of the Total Environment, 2023, 865: 161266
    Qin X Y, Xie G J, Wu X M, et al. Prenatal exposure to perfluorooctanoic acid induces nerve growth factor expression in cerebral cortex cells of mouse offspring [J]. Environmental Science and Pollution Research International, 2018, 25(19): 18914-18920
    Yu T T, Zhou G D, Cai Z Z, et al. Behavioral effects of early-life exposure to perfluorooctanoic acid might synthetically link to multiple aspects of dopaminergic neuron development and dopamine functions in zebrafish larvae [J]. Aquatic Toxicology, 2021, 238: 105926
    Espinosa-Ruiz C, Manuguerra S, Morghese M, et al. Immunity and inflammatory responses in gilthead sea bream (Sparus aurata L.) exposed to sub-lethal mixture of carbamazepine, cadmium chloride and polybrominated diphenyl ether [J]. Fish & Shellfish Immunology, 2021, 111: 25-35
    Birgersson L, Jouve J, Jönsson E, et al. Thyroid function and immune status in perch (Perca fluviatilis) from lakes contaminated with PFASs or PCBs [J]. Ecotoxicology and Environmental Safety, 2021, 222: 112495
    Renault T. Immunotoxicological effects of environmental contaminants on marine bivalves [J]. Fish & Shellfish Immunology, 2015, 46(1): 88-93
    Sawyna J M, Spivia W R, Radecki K, et al. Association between chronic organochlorine exposure and immunotoxicity in the round stingray (Urobatis halleri) [J]. Environmental Pollution, 2017, 223: 42-50
    Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European Sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results [J]. Environmental Pollution, 2016, 212: 251-256
    Segner H, Bailey C, Tafalla C, et al. Immunotoxicity of xenobiotics in fish: A role for the aryl hydrocarbon receptor (AhR)? [J]. International Journal of Molecular Sciences, 2021, 22(17): 9460
    Tang Y, Rong J H, Guan X F, et al. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species [J]. Environmental Pollution, 2020, 258: 113845
    Su L, Cai H W, Kolandhasamy P, et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems [J]. Environmental Pollution, 2018, 234: 347-355
    Joshy A, Krupesha Sharma S R K, Mini K G, et al. Histopathological evaluation of bivalves from the southwest coast of India as an indicator of environmental quality [J]. Aquatic Toxicology, 2022, 243: 106076
    Andreyeva A Y, Efremova E S, Kukhareva T A. Morphological and functional characterization of hemocytes in cultivated mussel (Mytilus galloprovincialis) and effect of hypoxia on hemocyte parameters [J]. Fish & Shellfish Immunology, 2019, 89: 361-367
    Bernardini I, Matozzo V, Valsecchi S, et al. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum [J]. Environment International, 2021, 152: 106484
    Liu C H, Chang V W, Gin K Y, et al. Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis) [J]. The Science of the Total Environment, 2014, 487: 117-122
    Ayhan M M, Katalay S, Günal A Ç. How pollution effects the immune systems of invertebrate organisms (Mytilus galloprovincialis Lamark, 1819) [J]. Marine Pollution Bulletin, 2021, 172: 112750
    Li F L, Yu Y X, Guo M M, et al. Integrated analysis of physiological, transcriptomics and metabolomics provides insights into detoxication disruption of PFOA exposure in Mytilus edulis [J]. Ecotoxicology and Environmental Safety, 2021, 214: 112081
    Sturla Lompré J, Moleiro P, de Marchi L, et al. Bioaccumulation and ecotoxicological responses of clams exposed to terbium and carbon nanotubes: Comparison between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) species [J]. The Science of the Total Environment, 2021, 784: 146914
    张睿佳, 周枝凤, 李敏杰, 等. HPLC-MS/MS与ICP-MS分别测定血液中14种全氟化合物及常见金属元素[J]. 分析测试学报, 2017, 36(8): 975-979

    Zhang R J, Zhou Z F, Li M J, et al. Analysis of 14 perfluorinated compounds and common metal elements in blood by HPLC-MS/MS and ICP-MS [J]. Journal of Instrumental Analysis, 2017, 36(8): 975-979 (in Chinese)

    汪蕾, 张秀霞, 王冬梅, 等. β-1,3-葡聚糖对红螯螯虾血细胞的免疫刺激作用[J]. 南方农业学报, 2019, 50(4): 883-890

    Wang L, Zhang X X, Wang D M, et al. Immunostimulation of β-1,3-glucan on haemocytes of red claw crayfish (Cherax quadricarinatus) [J]. Journal of Southern Agriculture, 2019, 50(4): 883-890 (in Chinese)

    Guo M M, Zheng G C, Peng J X, et al. Distribution of perfluorinated alkyl substances in marine shellfish along the Chinese Bohai Sea coast [J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54(4): 271-280
    Li Y J, Wang J, Zheng M Y, et al. Development of ELISAs for the detection of vitellogenin in three marine fish from coastal areas of China [J]. Marine Pollution Bulletin, 2018, 133: 415-422
    Wang Q, Ruan Y F, Jin L J, et al. Oysters for legacy and emerging per- and polyfluoroalkyl substances (PFASs) monitoring in estuarine and coastal waters: Phase distribution and bioconcentration profile [J]. The Science of the Total Environment, 2022, 846: 157453
    Pecquet A M, Maier A, Kasper S, et al. Exposure to perfluorooctanoic acid (PFOA) decreases neutrophil migration response to injury in zebrafish embryos [J]. BMC Research Notes, 2020, 13(1): 408
    Liu C H, Gin K Y H. Immunotoxicity in green mussels under perfluoroalkyl substance (PFAS) exposure: Reversible response and response model development [J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1138-1145
    Chi C, Giri S S, Jun J W, et al. Effects of algal toxin okadaic acid on the non-specific immune and antioxidant response of bay scallop (Argopecten irradians) [J]. Fish & Shellfish Immunology, 2017, 65: 111-117
    Cima F, Matozzo V. Proliferation and differentiation of circulating haemocytes of Ruditapes philippinarum as a response to bacterial challenge [J]. Fish & Shellfish Immunology, 2018, 81: 73-82
    闫永峰, 任培丽, 赵文军. 永城煤矿塌陷区水污染对鲫鱼外周血细胞数量的影响[J]. 河南农业科学, 2009, 38(10): 128-131

    Yan Y F, Ren P L, Zhao W J. Changes of the peripheral blood cell quantity of Carassius auratus in Yongcheng waterlogged area caused by mining coal [J]. Journal of Henan Agricultural Sciences, 2009, 38(10): 128-131 (in Chinese)

    Brulle F, Jeffroy F, Madec S, et al. Transcriptomic analysis of Ruditapes philippinarum hemocytes reveals cytoskeleton disruption after in vitro Vibrio tapetis challenge [J]. Developmental and Comparative Immunology, 2012, 38(2): 368-376
    Donaghy L, Lambert C, Choi K S, et al. Hemocytes of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum): Current knowledge and future prospects [J]. Aquaculture, 2009, 297(1/4): 10-24
    Hannam M L, Bamber S D, Sundt R C, et al. Immune modulation in the blue mussel Mytilus edulis exposed to North Sea produced water [J]. Environmental Pollution, 2009, 157(6): 1939-1944
    Fisher W S, Oliver L M, Winstead J T, et al. A survey of oysters Crassostrea virginica from Tampa Bay, Florida: Associations of internal defense measurements with contaminant burdens [J]. Aquatic Toxicology, 2000, 51(1): 115-138
    杨东敏, 张艳丽, 丁鉴锋, 等. 高温、低盐对菲律宾蛤仔免疫能力的影响[J]. 大连海洋大学学报, 2017, 32(3): 302-309

    Yang D M, Zhang Y L, Ding J F, et al. Synergistic effects of high temperature and low salinity on immunity of Manila clam Ruditapes philippinarum [J]. Journal of Dalian Ocean University, 2017, 32(3): 302-309 (in Chinese)

    Tassanakajon A, Somboonwiwat K, Supungul P, et al. Discovery of immune molecules and their crucial functions in shrimp immunity [J]. Fish & Shellfish Immunology, 2013, 34(4): 954-967
    Moreira R, Romero A, Rey-Campos M, et al. Stimulation of Mytilus galloprovincialis hemocytes with different immune challenges induces differential transcriptomic, miRNomic, and functional responses [J]. Frontiers in Immunology, 2020, 11: 606102
    Ashton-Alcox K A, Ford S E. Variability in molluscan hemocytes: A flow cytometric study [J]. Tissue & Cell, 1998, 30(2): 195-204
    Goedken M, De Guise S. Flow cytometry as a tool to quantify oyster defence mechanisms [J]. Fish & Shellfish Immunology, 2004, 16(4): 539-552
    Rolton A, Ragg N L C. Green-lipped mussel (Perna canaliculus) hemocytes: A flow cytometric study of sampling effects, sub-populations and immune-related functions [J]. Fish & Shellfish Immunology, 2020, 103: 181-189
    潘辉, 高如承, 吴丽云, 等. 利用流式细胞术研究3种贝类的血细胞分类[J]. 福建师范大学学报(自然科学版), 2011, 27(4

    ): 127-130 Pan H, Gao R C, Wu L Y, et al. Flow cytometry studies on haemocyte classification in three species of bivalve mollusks [J]. Journal of Fujian Normal University (Natural Science Edition), 2011, 27(4): 127-130 (in Chinese)

    王有基, 林江兴, 李琼珍, 等. 翡翠贻贝血淋巴细胞亚群鉴定及相关免疫功能的流式细胞分析[J]. 水产学报, 2014, 38(3): 385-399

    Wang Y J, Lin J X, Li Q Z, et al. Characterization of the subpopulation and flow cytometric analysis of immune-related parameters of hemocytes in the green-lipped mussel Perna viridis [J]. Journal of Fisheries of China, 2014, 38(3): 385-399 (in Chinese)

    冼健安, 钱坤, 郭慧, 等. 杂色鲍血细胞分类、结构和免疫功能的流式细胞术分析[J]. 海洋科学, 2015, 39(12): 8-14

    Xian J A, Qian K, Guo H, et al. Classification, structure, and immune functions of abalone (Haliotis diversicolor) hemocytes using a flow cytometric analysis [J]. Marine Sciences, 2015, 39(12): 8-14 (in Chinese)

    任星潮, 李荣, 张宁, 等. 文蛤和菲律宾蛤仔血细胞的图像流式分类分析[J]. 安徽农业科学, 2020, 48(8): 98-101

    Ren X C, Li R, Zhang N, et al. Hemocytes classification of Meretrix meretrix and Ruditapes philippinarum by imaging flow cytometer [J]. Journal of Anhui Agricultural Sciences, 2020, 48(8): 98-101 (in Chinese)

    Buchmann K. Neutrophils and aquatic pathogens [J]. Parasite Immunology, 2022, 44(6): e12915
    Ruddell C L. The fine structure of oyster agranular amebocytes from regenerating mantle wounds in the Pacific oyster, Crassostrea gigas [J]. Journal of Invertebrate Pathology, 1971, 18(2): 260-268
    Aladaileh S, Nair S V, Birch D, et al. Sydney rock oyster (Saccostrea glomerata) hemocytes: Morphology and function [J]. Journal of Invertebrate Pathology, 2007, 96(1): 48-63
    Qyli M, Aliko V, Faggio C. Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: Evaluation of hemocyte toxicity and its possible effects on immune response [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2020, 231: 108739
    陈琳. 温排水胁迫下泥蚶的毒性效应及其响应机制[D]. 舟山: 浙江海洋大学, 2022: 35-37 Chen L. Toxic effects and response mechanism of Tegillarca granosa under warm drainage stress [D]. Zhoushan: Zhejiang Ocean University, 2022: 35

    -37 (in Chinese)

    Liu C H, Gin K Y H. Immunotoxicity in green mussels under perfluoroalkyl substance (PFAS) exposure: Reversible response and response model development [J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1138-1145
    Terahara K, Takahashi K G. Mechanisms and immunological roles of apoptosis in molluscs [J]. Current Pharmaceutical Design, 2008, 14(2): 131-137
    Arukwe A, Mortensen A S. Lipid peroxidation and oxidative stress responses of salmon fed a diet containing perfluorooctane sulfonic- or perfluorooctane carboxylic acids [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2011, 154(4): 288-295
    Guan X F, Tang Y, Zha S J, et al. Exogenous Ca2+ mitigates the toxic effects of TiO2 nanoparticles on phagocytosis, cell viability, and apoptosis in haemocytes of a marine bivalve mollusk, Tegillarca granosa [J]. Environmental Pollution, 2019, 252(Pt B): 1764-1771
    Cui Y, Liu W, Xie W P, et al. Investigation of the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line [J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15673-15682
    Cerenius L, Lee B L, Söderhäll K. The proPO-system: Pros and cons for its role in invertebrate immunity [J]. Trends in Immunology, 2008, 29(6): 263-271
    Rickwood C J, Galloway T S. Acetylcholinesterase inhibition as a biomarker of adverse effect. A study of Mytilus edulis exposed to the priority pollutant chlorfenvinphos [J]. Aquatic Toxicology, 2004, 67(1): 45-56
    Sauvé S, Brousseau P, Pellerin J, et al. Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn) [J]. Aquatic Toxicology, 2002, 58(3-4): 189-200
    Butenhoff J, Costa G, Elcombe C, et al. Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months [J]. Toxicological Sciences, 2002, 69(1): 244-257
    Solan M E, Koperski C P, Senthilkumar S, et al. Short-chain per- andpolyfluoralkyl substances (PFAS) effects on oxidative stress biomarkers in human liver, kidney, muscle, and microglia cell lines [J]. Environmental Research, 2023, 223: 115424
    Phelps D W, Palekar A I, Conley H E, et al. Legacy and emerging per- and polyfluoroalkyl substances suppress the neutrophil respiratory burst [J]. Journal of Immunotoxicology, 2023, 20(1): 2176953
    Amraoui I, Khalloufi N, Touaylia S. Effects to perfluorooctane sulfonate (PFOS) on the mollusk Unio ravoisieri under laboratory exposure [J]. Chemistry and Ecology, 2018, 34(4): 324-339
    Franco L, Romero D, García-Navarro J A, et al. Esterase activity (EA), total oxidant status (TOS) and total antioxidant capacity (TAC) in gills of Mytilus galloprovincialis exposed to pollutants: Analytical validation and effects evaluation by single and mixed heavy metal exposure [J]. Marine Pollution Bulletin, 2016, 102(1): 30-35
    Wang Y J, Hu M H, Li Q Z, et al. Immune toxicity of TiO2 under hypoxia in the green-lipped mussel Perna viridis based on flow cytometric analysis of hemocyte parameters [J]. The Science of the Total Environment, 2014, 470/471: 791-799
    Goswami P, Hariharan G, Godhantaraman N, et al. An integrated use of multiple biomarkers to investigate the individual and combined effect of copper and cadmium on the marine green mussel (Perna viridis) [J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(13): 1564-1577
    Huang X Z, Lin D H, Ning K, et al. Hemocyte responses of the thick shell mussel Mytilus coruscus exposed to nano-TiO2 and seawater acidification [J]. Aquatic Toxicology, 2016, 180: 1-10
    Ratliff B B, Abdulmahdi W, Pawar R, et al. Oxidant mechanisms in renal injury and disease [J]. Antioxidants & Redox Signaling, 2016, 25(3): 119-146
    Du L Y, Li X M, Zhen L H, et al. Everolimus inhibits breast cancer cell growth through PI3K/AKT/mTOR signaling pathway [J]. Molecular Medicine Reports, 2018, 17(5): 7163-7169
    Qi P Z, Wu Y S, Gu Z Q, et al. A novel molluscan TLR molecule engaged in inflammatory response through MyD88 adapter recruitment [J]. Developmental and Comparative Immunology, 2022, 131: 104373
    Jiang K Y, Nie H T, Yin Z H, et al. Apextrin from Ruditapes philippinarum functions as pattern recognition receptor and modulates NF-κB pathway [J]. International Journal of Biological Macromolecules, 2022, 214: 33-44
    Sun J J, Wang L L, Song L S. The primitive complement system inmolluscs [J]. Developmental and Comparative Immunology, 2023, 139: 104565
    Thépaut E, Dirven H A A M, Haug L S, et al. Per- and polyfluoroalkyl substances in serum and associations with food consumption and use of personal care products in the Norwegian biomonitoring study from the EU Project EuroMix [J]. Environmental Research, 2021, 195: 110795
  • 加载中
计量
  • 文章访问数:  1081
  • HTML全文浏览数:  1081
  • PDF下载数:  148
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-02-28
龚秀琼, 周扬, 李风铃, 郭萌萌, 耿倩倩, 谭志军, 姚琳, 江艳华, 曲梦. 全氟辛酸(PFOA)对菲律宾蛤仔血淋巴的毒性效应研究[J]. 生态毒理学报, 2024, 19(4): 270-283. doi: 10.7524/AJE.1673-5897.20240228003
引用本文: 龚秀琼, 周扬, 李风铃, 郭萌萌, 耿倩倩, 谭志军, 姚琳, 江艳华, 曲梦. 全氟辛酸(PFOA)对菲律宾蛤仔血淋巴的毒性效应研究[J]. 生态毒理学报, 2024, 19(4): 270-283. doi: 10.7524/AJE.1673-5897.20240228003
Gong Xiuqiong, Zhou Yang, Li Fengling, Guo Mengmeng, Geng Qianqian, Tan Zhijun, Yao Lin, Jiang Yanhua, Qu Meng. Toxicity Effects of Perflurooctanoic Acid (PFOA) on Ruditapes philippinarum Hemocytes[J]. Asian journal of ecotoxicology, 2024, 19(4): 270-283. doi: 10.7524/AJE.1673-5897.20240228003
Citation: Gong Xiuqiong, Zhou Yang, Li Fengling, Guo Mengmeng, Geng Qianqian, Tan Zhijun, Yao Lin, Jiang Yanhua, Qu Meng. Toxicity Effects of Perflurooctanoic Acid (PFOA) on Ruditapes philippinarum Hemocytes[J]. Asian journal of ecotoxicology, 2024, 19(4): 270-283. doi: 10.7524/AJE.1673-5897.20240228003

全氟辛酸(PFOA)对菲律宾蛤仔血淋巴的毒性效应研究

    通讯作者: 李风铃(1980-),女,博士,副研究员,主要研究方向为新污染物的毒理学评价。E-mail:lifl@ysfri.ac.cn; 
    作者简介: 龚秀琼(1999-),女,硕士,研究方向为生态毒理学,E-mail:2324601201@qq.com
  • 1. 上海海洋大学水产与生命学院, 上海 201306;
  • 2. 中国水产科学研究院黄海水产研究所, 农业农村部水产品质量安全检测与评价重点实验室, 青岛 266071
基金项目:

现代农业产业技术体系专项(CARS-49);中国水产科学研究院基本科研业务费项目(2020TD71)

摘要: 全氟辛酸(perfluorooctanoic acid, PFOA)是海洋环境中的一类新兴污染物。双壳贝类常被用于评估污染物毒性和监测生态环境,是海洋生态系统的重要指示物种。血细胞是双壳贝类免疫系统的主要组成部分,其相关指标的变化对评估PFOA的污染状况具有重要意义。本研究测量了PFOA在菲律宾蛤仔(Ruditapes philippinarum)血淋巴细胞中的生物蓄积含量和免疫相关指标,包括血细胞总数(total hemocyte count, THC)、细胞活性、细胞凋亡、吞噬活性、活性氧(reactive oxygen species, ROS)和非特异性酯酶活性,从免疫器官、免疫功能以及免疫因子3个方面系统评估PFOA对贝类的免疫毒性。结果显示:PFOA在血淋巴中大量蓄积,实验第14天时PFOA在3个处理组中的含量分别为(122.5±5.35)、(149.38±0.52)、(157.23±4.65) ng·mL-1。清水恢复7 d后,各处理组中PFOA的蓄积量虽有所下降,但仍分别高达(3.33±0.16)、(5.42±0.08)、(6.20±0.20) ng·mL-1。进一步研究发现,PFOA的胁迫可引发蛤仔血细胞各生理指标及免疫功能的显著变化。PFOA以浓度依赖性方式缩减了蛤仔血细胞总数,改变了血细胞组成比例,细胞活力及吞噬活性明显下降,ROS大量生成,凋亡率大幅增加,非特异性酯酶活性明显增强。且清水恢复7 d各指标仍未能恢复到对照组水平。此外,在分子水平上,PFOA的暴露亦显著改变了免疫相关基因的表达。可见,PFOA的胁迫可对菲律宾蛤仔产生明显的免疫毒性效应。该研究为揭示PFOA对海洋生态系统的潜在风险和筛选海洋中全氟及多氟烷基物质(PFASs)污染的生物指示因子提供一定的科学依据。

English Abstract

参考文献 (80)

返回顶部

目录

/

返回文章
返回