重金属污染物及其复合暴露的生物效应及机制研究进展

赵亚南, 聂亚光, 裴诚诚, 倪珅瑶, 许安. 重金属污染物及其复合暴露的生物效应及机制研究进展[J]. 生态毒理学报, 2022, 17(5): 190-201. doi: 10.7524/AJE.1673-5897.20211122003
引用本文: 赵亚南, 聂亚光, 裴诚诚, 倪珅瑶, 许安. 重金属污染物及其复合暴露的生物效应及机制研究进展[J]. 生态毒理学报, 2022, 17(5): 190-201. doi: 10.7524/AJE.1673-5897.20211122003
Zhao Yanan, Nie Yaguang, Pei Chengcheng, Ni Shenyao, Xu An. Research Progress on Biological Effects and Mechanisms of Heavy Metal Pollutants and Their Combined Exposure[J]. Asian journal of ecotoxicology, 2022, 17(5): 190-201. doi: 10.7524/AJE.1673-5897.20211122003
Citation: Zhao Yanan, Nie Yaguang, Pei Chengcheng, Ni Shenyao, Xu An. Research Progress on Biological Effects and Mechanisms of Heavy Metal Pollutants and Their Combined Exposure[J]. Asian journal of ecotoxicology, 2022, 17(5): 190-201. doi: 10.7524/AJE.1673-5897.20211122003

重金属污染物及其复合暴露的生物效应及机制研究进展

    作者简介: 赵亚南(1996-),女,硕士研究生,研究方向为环境毒理学,E-mail:yanan3223@163.com
    通讯作者: 许安, E-mail: anxu@ipp.ac.cn
  • 基金项目:

    国家自然科学基金资助项目(91743106);安徽省重点研究与开发计划项目(202004i07020015)

  • 中图分类号: X171.5

Research Progress on Biological Effects and Mechanisms of Heavy Metal Pollutants and Their Combined Exposure

    Corresponding author: Xu An, anxu@ipp.ac.cn
  • Fund Project:
  • 摘要: 随着工业生产活动的快速发展,重金属污染已经成为不可忽视的环境问题。重金属作为一类持久性的污染物,能够在环境中长期存在,并与其他污染物相互作用从而对生物体造成影响。目前,单一重金属的毒理效应及致毒机理已开展系统研究,但多种重金属复合暴露的毒性效应及分子研究仍较为匮乏。本文归纳了近年来重金属复合暴露对不同生物模型的毒性作用,发现复合重金属引起的毒理效应与复合重金属种类、数量、浓度、暴露时间和受试模型有关,阐释了复合暴露通过改变重金属在生物体内吸收、累积以及与生物大分子作用影响其毒性效应的分子机制。基于目前的研究现状,我们认为未来的重金属复合毒性研究应更加注重环境相关性,引入新的检测技术和生物信息学的分析方法,进一步深入挖掘重金属复合致毒的物理化学和生物学机制。
  • 加载中
  • Islam M S, Ahmed M K, Raknuzzaman M, et al. Heavy metal pollution in surface water and sediment:A preliminary assessment of an urban river in a developing country[J]. Ecological Indicators, 2015, 48:282-291
    Lin H S, Li H J, Yang X L, et al. Comprehensive investigation and assessment of nutrient and heavy metal contamination in the surface water of coastal Bohai Sea in China[J]. Journal of Ocean University of China, 2020, 19(4):843-852
    Hu X F, Jiang Y, Shu Y, et al. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields[J]. Journal of Geochemical Exploration, 2014, 147:139-150
    Marrugo-Negrete J, Pinedo-Hernández J, Díez S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia[J]. Environmental Research, 2017, 154:380-388
    Harada M. Minamata disease:Methylmercury poisoning in Japan caused by environmental pollution[J]. Critical Reviews in Toxicology, 1995, 25(1):1-24
    Holdaway J, Wang W Y. From soil pollution to "cadmium rice" to public health impacts:An interdisciplinary analysis of influencing factors and possible responses[J]. Journal of Resources and Ecology, 2018, 9(1):1
    Chai B W, Wei Q, She Y Z, et al. Soil microplastic pollution in an e-waste dismantling zone of China[J]. Waste Management, 2020, 118:291-301
    Iordache A M, Nechita C, Pluhacek T, et al. Past and present anthropic environmental stress reflect high susceptibility of natural freshwater ecosystems in Romania[J]. Environmental Pollution, 2020, 267:115505
    Huang W J, Pang Y T, Luo X S, et al. The cytotoxicity and genotoxicity of PM2.5 during a snowfall event in different functional areas of a megacity[J]. The Science of the Total Environment, 2020, 741:140267
    Feng W W, Wu X S, Mao G H, et al. Neurological effects of subchronic exposure to dioctyl phthalate (DOP), lead, and arsenic, individual and mixtures, in immature mice[J]. Environmental Science and Pollution Research International, 2020, 27(9):9247-9260
    马青清, 王博, 张责研, 等. 太湖北部表层沉积物重金属污染及其生物毒性研究[J]. 生态毒理学报, 2016, 11(3):204-210

    Ma Q Q, Wang B, Zhang Z Y, et al. Study on heavy metals pollution in sediments from north of Taihu Lake and its biological toxicity[J]. Asian Journal of Ecotoxicology, 2016, 11(3):204-210(in Chinese)

    张明兴, 王莹, 王立军, 等. 重金属和聚苯乙烯微球对卤虫的复合毒性效应研究[J]. 生态毒理学报, 2019, 14(1):99-105

    Zhang M X, Wang Y, Wang L J, et al. Combined toxicity of polystyrene microplastics and heavy metals to brine shrimp (Artemia parthenogenetica)[J]. Asian Journal of Ecotoxicology, 2019, 14(1):99-105(in Chinese)

    Martin O, Scholze M, Ermler S, et al. Ten years of research on synergisms and antagonisms in chemical mixtures:A systematic review and quantitative reappraisal of mixture studies[J]. Environment International, 2021, 146:106206
    Wang Z J, Liu S S, Feng L, et al. BNNmix:A new approach for predicting the mixture toxicity of multiple components based on the back-propagation neural network[J]. Science of the Total Environment, 2020, 738:140317
    Bhagat J, Nishimura N, Shimada Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants:Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2021, 405:123913
    Freire C, Amaya E, Gil F, et al. Placental metal concentrations and birth outcomes:The Environment and Childhood (INMA) project[J]. International Journal of Hygiene and Environmental Health, 2019, 222(3):468-478
    Kim S S, Xu X J, Zhang Y L, et al. Birth outcomes associated with maternal exposure to metals from informal electronic waste recycling in Guiyu, China[J]. Environment International, 2020, 137:105580
    Moody E C, Colicino E, Wright R O, et al. Environmental exposure to metal mixtures and linear growth in healthy Ugandan children[J]. PLoS One, 2020, 15(5):e0233108
    Liu S H, Bobb J F, Claus Henn B, et al. Bayesian varying coefficient kernel machine regression to assess neurodevelopmental trajectories associated with exposure to complex mixtures[J]. Statistics in Medicine, 2018, 37(30):4680-4694
    Mielz[DD(-1.6mm]·[] yńska D, Siwińska E, Kapka L, et al. The influence of environmental exposure to complex mixtures including PAHs and lead on genotoxic effects in children living in Upper Silesia, Poland[J]. Mutagenesis, 2006, 21(5):295-304
    Dudka I, Kossowska B, Senhadri H, et al. Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research:A preliminary study[J]. Environment International, 2014, 68:71-81
    Wang Y, Zhang P, Chen X, et al. Multiple metal concentrations and gestational diabetes mellitus in Taiyuan, China[J]. Chemosphere, 2019, 237:124412
    Duan W W, Xu C, Liu Q, et al. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality:A population-based cohort study[J]. Environmental Pollution, 2020, 263(Pt A):114630
    Adedara I A, Adegbosin A N, Abiola M A, et al. Neurobehavioural and biochemical responses associated with exposure to binary waterborne mixtures of zinc and nickel in rats[J]. Environmental Toxicology and Pharmacology, 2020, 73:103294
    Kadeyala P K, Sannadi S, Gottipolu R R. Alterations in apoptotic caspases and antioxidant enzymes in arsenic exposed rat brain regions:Reversal effect of essential metals and a chelating agent[J]. Environmental Toxicology and Pharmacology, 2013, 36(3):1150-1166
    Saritha S, Davuljigari C B, Kumar K P, et al. Effects of combined arsenic and lead exposure on the brain monoaminergic system and behavioral functions in rats:Reversal effect of MiADMSA[J]. Toxicology and Industrial Health, 2019, 35(2):89-108
    Rai A, Maurya S K, Khare P, et al. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture:Synergistic action of metal mixture in glial and neuronal functions[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2010, 118(2):586-601
    Zhou F K, Xie J, Zhang S Y, et al. Lead, cadmium, arsenic, and mercury combined exposure disrupted synaptic homeostasis through activating the Snk-SPAR pathway[J]. Ecotoxicology and Environmental Safety, 2018, 163:674-684
    Bizarro P, Acevedo S, Niño-Cabrera G, et al. Ultrastructural modifications in the mitochondrion of mouse Sertoli cells after inhalation of lead, cadmium or lead-cadmium mixture[J]. Reproductive Toxicology, 2003, 17(5):561-566
    Adedara I A, Abolaji A O, Awogbindin I O, et al. Suppression of the brain-pituitary-testicular axis function following acute arsenic and manganese co-exposure and withdrawal in rats[J]. Journal of Trace Elements in Medicine and Biology:Organ of the Society for Minerals and Trace Elements (GMS), 2017, 39:21-29
    Száková J, Zídek V, Miholová D. Influence of elevated content of cadmium and arsenic in diet containing feeding yeast on organisms of rats[J]. Czech Journal of Animal Science, 2009, 54(1):1-9
    Wildemann T M, Weber L P, Siciliano S D. Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats[J]. Journal of Applied Toxicology:JAT, 2015, 35(8):918-926
    Wildemann T M, Siciliano S D, Weber L P. The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio[J]. Toxicology, 2016, 339:1-8
    Arbi S, Oberholzer H M, van Rooy M J, et al. Effects of chronic exposure to mercury and cadmium alone and in combination on the coagulation system of Sprague-Dawley rats[J]. Ultrastructural Pathology, 2017, 41(4):275-283
    Basha D C, Basha S S, Reddy G R. Lead-induced cardiac and hematological alterations in aging Wistar male rats:Alleviating effects of nutrient metal mixture[J]. Biogerontology, 2012, 13(4):359-368
    Bouraoui Z, Banni M, Ghedira J, et al. Evaluation of enzymatic biomarkers and lipoperoxidation level in Hediste diversicolor exposed to copper and benzo[a] pyrene[J]. Ecotoxicology and Environmental Safety, 2009, 72(7):1893-1898
    Wu H F, Wang W X. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis[J]. Aquatic Toxicology, 2010, 100(4):339-345
    Lu C L, Svoboda K R, Lenz K A, et al. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans[J]. Environmental Science and Pollution Research International, 2018, 25(16):15378-15389
    Tang B W, Tong P, Xue K S, et al. High-throughput assessment of toxic effects of metal mixtures of cadmium (Cd), lead (Pb), and manganese (Mn) in nematode Caenorhabditis elegans[J]. Chemosphere, 2019, 234:232-241
    Heffern K, Tierney K, Gallagher E P. Comparative effects of cadmium, zinc, arsenic and chromium on olfactory-mediated neurobehavior and gene expression in larval zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 201:83-90
    Driessnack M K, Jamwal A, Niyogi S. Effects of chronic waterborne cadmium and zinc interactions on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas)[J]. Ecotoxicology and Environmental Safety, 2017, 140:65-75
    Arini A, Gourves P Y, Gonzalez P, et al. Metal detoxification and gene expression regulation after a Cd and Zn contamination:An experimental study on Danio rerio[J]. Chemosphere, 2015, 128:125-133
    Pérez E, Hoang T C. Responses of Daphnia magna to chronic exposure of cadmium and nickel mixtures[J]. Chemosphere, 2018, 208:991-1001
    Moyson S, Vissenberg K, Fransen E, et al. Mixture effects of copper, cadmium, and zinc on mortality and behavior of Caenorhabditis elegans[J]. Environmental Toxicology and Chemistry, 2018, 37(1):145-159
    Moyson S, Town R M, Vissenberg K, et al. The effect of metal mixture composition on toxicity to C. elegans at individual and population levels[J]. PLoS One, 2019, 14(6):e0218929
    Garrick M D, Dolan K G, Horbinski C, et al. DMT1:A mammalian transporter for multiple metals[J]. BioMetals, 2003, 16(1):41-54
    Castaldo G, Flipkens G, Pillet M, et al. Antagonistic bioaccumulation of waterborne Cu(Ⅱ) and Cd(Ⅱ) in common carp (Cyprinus carpio) and effects on ion-homeostasis and defensive mechanisms[J]. Aquatic Toxicology, 2020, 226:105561
    Cobbina S J, Xu H, Zhao T, et al. A multivariate assessment of innate immune-related gene expressions due to exposure to low concentration individual and mixtures of four kinds of heavy metals on zebrafish (Danio rerio) embryos[J]. Fish & Shellfish Immunology, 2015, 47(2):1032-1042
    Lanier C, Bernard F, Dumez S, et al. Combined toxic effects and DNA damage to two plant species exposed to binary metal mixtures (Cd/Pb)[J]. Ecotoxicology and Environmental Safety, 2019, 167:278-287
    Alonso-Castro A J, Carranza-Alvarez C, Alfaro-De la Torre M C, et al. Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4):688-696
    Israr M, Jewell A, Kumar D, et al. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii[J]. Journal of Hazardous Materials, 2011, 186(2-3):1520-1526
    Martinez S, Sáenz M E, Alberdi J L, et al. Comparative ecotoxicity of single and binary mixtures exposures of cadmium and zinc on growth and biomarkers of Lemna gibba[J]. Ecotoxicology, 2020, 29(5):571-583
    赵晓祥, 冯璐, 王宇晖. 锌、镉单一及复合胁迫下番茄幼苗生理响应及联合毒性的研究[J]. 安全与环境学报, 2020, 20(3):1176-1184

    Zhao X X, Feng L, Wang Y H. Physiological responses and joint toxicity of tomato seedlings under single and combined stress of zinc and cadmium[J]. Journal of Safety and Environment, 2020, 20(3):1176-1184(in Chinese)

    季冬雪, 华珞, 王学东, 等. Cu-Cd、Zn-Cd、Cu-Zn复合污染对水稻毒性和重金属吸收的影响[J]. 环境污染与防治, 2018, 40(10):1141-1146

    Ji D X, Hua L, Wang X D, et al. The effects of combined heavy metals (Cu-Cd, Zn-Cd, Cu-Zn) on the toxicity and uptake of metal elements in rice[J]. Environmental Pollution & Control, 2018, 40(10):1141-1146(in Chinese)

    Domingo-Relloso A, Grau-Perez M, Galan-Chilet I, et al. Urinary metals and metal mixtures and oxidative stress biomarkers in an adult population from Spain:The Hortega Study[J]. Environment International, 2019, 123:171-180
    Davuljigari C B, Gottipolu R R. Late-life cardiac injury in rats following early life exposure to lead:Reversal effect of nutrient metal mixture[J].Cardiovascular Toxicology, 2020, 20(3):249-260
    Huang M Y, Duan R Y, Yin J W, et al. Individual and mixture toxicity of chromium and copper in development, oxidative stress, lipid metabolism and apoptosis of Bufo gargarizans embryos[J]. Aquatic Toxicology, 2020, 229:105671
    刘祥, 王敏, 陈求稳, 等. 典型重金属胁迫对日本沼虾的氧化损伤及交互作用[J]. 生态毒理学报, 2017, 12(6):116-126

    Liu X, Wang M, Chen Q W, et al. Oxidative damage and interaction induced by typical heavy metals in waters on the Macrobranchium nipponense[J]. Asian Journal of Ecotoxicology, 2017, 12(6):116-126(in Chinese)

    Zhang C, Ge J, Lv M W, et al. Selenium prevent cadmium-induced hepatotoxicity through modulation of endoplasmic reticulum-resident selenoproteins and attenuation of endoplasmic reticulum stress[J]. Environmental Pollution, 2020, 260:113873
    Wang Y F, Su H, Song X, et al. Luteolin inhibits multi-heavy metal mixture-induced HL7702 cell apoptosis through downregulation of ROS-activated mitochondrial pathway[J]. International Journal of Molecular Medicine, 2018, 41(1):233-241
    Wu B, Liu Z T, Xu Y, et al. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta)[J]. Ecotoxicology and Environmental Safety, 2012, 81:122-126
    de Oliveira L F, Santos C, Risso W E, et al. Triple-mixture of Zn, Mn, and Fe increases bioaccumulation and causes oxidative stress in freshwater neotropical fish[J]. Environmental Toxicology and Chemistry, 2018, 37(6):1749-1756
    Boukadida K, Cachot J, Morin B, et al. Moderate temperature elevation increase susceptibility of early-life stage of the Mediterranean mussel, Mytilus galloprovincialis to metal-induced genotoxicity[J]. The Science of the Total Environment, 2019, 663:351-360
    张迎梅, 王叶菁, 虞闰六, 等. 重金属Cd2+、Pb2+和Zn2+对泥鳅DNA损伤的研究[J]. 水生生物学报, 2006, 30(4):399-403

    Zhang Y M, Wang Y J, Yu R L, et al. Effects of heavy metals Cd2+, Pb2+ and Zn2+ on DNA damage of loach Misgurnus anguillicandatus[J]. Acta Hydrobiologica Sinica, 2006, 30(4):399-403(in Chinese)

    Driessnack M K, Jamwal A, Niyogi S. Effects of chronic exposure to waterborne copper and nickel in binary mixture on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas)[J]. Chemosphere, 2017, 185:964-974
    Castaldo G, Pillet M, Slootmaekers B, et al. Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, Cyprinus carpio[J]. Aquatic Toxicology, 2020, 218:105363
    张融, 范文宏, 唐戈, 等. 水体中重金属镉和锌对大型蚤联合毒性效应的初步研究[J]. 生态毒理学报, 2008, 3(3):286-290

    Zhang R, Fan W H, Tang G, et al. A preliminary study on joint toxic effects of Cd and Zn on Daphnia magna[J]. Asian Journal of Ecotoxicology, 2008, 3(3):286-290(in Chinese)

    Martínez-Pacheco M, Hidalgo-Miranda A, Romero-Córdoba S, et al. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects[J]. Gene, 2014, 533(2):508-514
  • 加载中
计量
  • 文章访问数:  5748
  • HTML全文浏览数:  5748
  • PDF下载数:  187
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-22
赵亚南, 聂亚光, 裴诚诚, 倪珅瑶, 许安. 重金属污染物及其复合暴露的生物效应及机制研究进展[J]. 生态毒理学报, 2022, 17(5): 190-201. doi: 10.7524/AJE.1673-5897.20211122003
引用本文: 赵亚南, 聂亚光, 裴诚诚, 倪珅瑶, 许安. 重金属污染物及其复合暴露的生物效应及机制研究进展[J]. 生态毒理学报, 2022, 17(5): 190-201. doi: 10.7524/AJE.1673-5897.20211122003
Zhao Yanan, Nie Yaguang, Pei Chengcheng, Ni Shenyao, Xu An. Research Progress on Biological Effects and Mechanisms of Heavy Metal Pollutants and Their Combined Exposure[J]. Asian journal of ecotoxicology, 2022, 17(5): 190-201. doi: 10.7524/AJE.1673-5897.20211122003
Citation: Zhao Yanan, Nie Yaguang, Pei Chengcheng, Ni Shenyao, Xu An. Research Progress on Biological Effects and Mechanisms of Heavy Metal Pollutants and Their Combined Exposure[J]. Asian journal of ecotoxicology, 2022, 17(5): 190-201. doi: 10.7524/AJE.1673-5897.20211122003

重金属污染物及其复合暴露的生物效应及机制研究进展

    通讯作者: 许安, E-mail: anxu@ipp.ac.cn
    作者简介: 赵亚南(1996-),女,硕士研究生,研究方向为环境毒理学,E-mail:yanan3223@163.com
  • 1. 安徽大学物质科学与信息技术研究院, 合肥 230601;
  • 2. 环境毒理与污染控制技术安徽省重点实验室, 中国科学院合肥物质科学研究院强磁场科学中心, 合肥 230031
基金项目:

国家自然科学基金资助项目(91743106);安徽省重点研究与开发计划项目(202004i07020015)

摘要: 随着工业生产活动的快速发展,重金属污染已经成为不可忽视的环境问题。重金属作为一类持久性的污染物,能够在环境中长期存在,并与其他污染物相互作用从而对生物体造成影响。目前,单一重金属的毒理效应及致毒机理已开展系统研究,但多种重金属复合暴露的毒性效应及分子研究仍较为匮乏。本文归纳了近年来重金属复合暴露对不同生物模型的毒性作用,发现复合重金属引起的毒理效应与复合重金属种类、数量、浓度、暴露时间和受试模型有关,阐释了复合暴露通过改变重金属在生物体内吸收、累积以及与生物大分子作用影响其毒性效应的分子机制。基于目前的研究现状,我们认为未来的重金属复合毒性研究应更加注重环境相关性,引入新的检测技术和生物信息学的分析方法,进一步深入挖掘重金属复合致毒的物理化学和生物学机制。

English Abstract

参考文献 (68)

返回顶部

目录

/

返回文章
返回