纳米氧化物对耐四环素屎肠球菌的毒性研究及机制初探
A Preliminary Exploration for Toxicity and Mechanism of Nano Metal Oxides to Tetracycline Resistant Enterococcus faecium
-
摘要: 城镇污水处理厂是废弃纳米材料在环境中重要的收纳场所,在水处理过程中存在与另一类新污染物耐药细菌及其抗性基因充分接触并相互作用的机会。尽管纳米材料对包括细菌在内的各种生物的毒性效应被普遍报道,然而对耐药细菌的毒性及风险的影响鲜有研究。本研究考察了3种污水中广泛存在的纳米氧化物对耐四环素屎肠球菌的毒性,并探索了纳米氧化物种类、粒径、浓度和在水中的赋存时间等因素的影响。结果表明,3种纳米氧化物的毒性大小为nCuO>nZnO>nTiO2;纳米氧化物对耐四环素屎肠球菌的毒性随浓度和粒径的提高均呈现先升高后降低的趋势,如在50 mg·L-1和40 nm处nTiO2毒性达到最高;赋存时间越长,纳米氧化物对耐四环素屎肠球菌的毒性越强。从影响机理看,纳米氧化物刺激显著提升了细胞膜的通透性,破坏细胞膜,导致细胞破裂死亡。本文可为阐明污水中广泛共存的纳米材料对耐药细菌的影响提供支撑。Abstract: Urban wastewater treatment plants are important reservoirs of waste nanomaterials in the environment. Nano metal oxides (NMOs) can contact and interact extensively with another emerging contaminants, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) during wastewater treatment process. Despite of frequent reports on the toxicity of nanomaterials to a variety of organisms including bacteria, few studies have been conducted yet on the toxicity of nanomaterials on ARB. In this study, the toxicity of NMOs to tetracycline-resistant Enterococcus faecium (TRE) was examined, and influences of NMOs' type, size, concentration and persistent period on the toxicity were explored. Results showed that the toxicity of NMOs followed the order of nCuO>nZnO>nTiO2. The toxicity of NMOs on TRE increased with NMOs' concentration and size, reaching the highest at 50 mg·L-1 and 40 nm (nTiO2), and then decreased finally. Furthermore, the toxicity of NMOs increased with the persistent period. As for the mechanism, NMOs substantially increased the permeability of TRE, destroyed cell membranes, and induced the rupture and death of cells. This study can be helpful in elucidating the effect of widely co-existing nano metal oxides in wastewater on antibiotic resistant bacteria.
-
Key words:
- nano metal oxides /
- Enterococcus faecium /
- toxicity /
- cell permeability
-
-
Ren M J, Horn H, Frimmel F H. Aggregation behavior of TiO2 nanoparticles in municipal effluent:Influence of ionic strengthen and organic compounds[J]. Water Research, 2017, 123:678-686 Sun T Y, Conroy G, Donner E, et al. Probabilistic modelling of engineered nanomaterial emissions to the environment:A spatio-temporal approach[J]. Environmental Science:Nano, 2015, 2(4):340-351 代朝猛, 沈晖, 段艳平, 等. 土壤和地下水环境中纳米材料迁移的研究进展[J]. 水资源与水工程学报, 2018, 29(3):236-242 , 248 Dai C M, Shen H, Duan Y P, et al. Review on the transportation of nanomaterials in soil and groundwater environment[J]. Journal of Water Resources and Water Engineering, 2018, 29(3):236-242, 248(in Chinese)
苗令占, 王沛芳, 侯俊, 等. 金属纳米材料对不同微生物聚集体的毒性研究进展[J]. 水资源保护, 2019, 35(1):73-78 , 94 Miao L Z, Wang P F, Hou J, et al. Research progress on toxicity of metallic nanomaterials to different microbial aggregates[J]. Water Resources Protection, 2019, 35(1):73-78, 94(in Chinese)
Kapoor V, Phan D, Pasha A B M T. Effects of metal oxide nanoparticles on nitrification in wastewater treatment systems:A systematic review[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2018, 53(7):659-668 Kunhikrishnan A, Shon H K, Bolan N S, et al. Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(4):277-318 Liu G Q, Wang D M, Wang J M, et al. Effect of ZnO particles on activated sludge:Role of particle dissolution[J]. Science of the Total Environment, 2011, 409(14):2852-2857 Tan M, Qiu G L, Ting Y P. Effects of ZnO nanoparticles on wastewater treatment and their removal behavior in a membrane bioreactor[J]. Bioresource Technology, 2015, 185:125-133 蔡全领, 胡献刚, 周启星. 石墨烯纳米材料对哺乳动物的毒性及其作用机制[J]. 生态毒理学报, 2017, 12(6):1-10 Cai Q L, Hu X G, Zhou Q X. Toxicity mechanism of graphene nanomaterials to mammals[J]. Asian Journal of Ecotoxicology, 2017, 12(6):1-10(in Chinese)
丛艺, 穆景利, 王菊英. 纳米材料在水环境中的行为及其对水生生物的毒性效应[J]. 海洋湖沼通报, 2014(3):112-120 Cong Y, Mu J L, Wang J Y. Behavior and toxicity of nanomaterials in aquatic environment[J]. Transactions of Oceanology and Limnology, 2014 (3):112-120(in Chinese)
Ahmad F, Liu X Y, Zhou Y, et al. An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2015, 166:21-28 Djurišić A B, Leung Y H, Ng A M C, et al. Toxicity of metal oxide nanoparticles:Mechanisms, characterization, and avoiding experimental artefacts[J]. Small, 2015, 11(1):26-44 陈斌, 张传玲, 江红生, 等. 纳米银诱导拟南芥活性氧自由基的积累和抗氧化系统的改变[J]. 基因组学与应用生物学, 2017, 36(4):1646-1653 Chen B, Zhang C L, Jiang H S, et al. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems[J]. Genomics and Applied Biology, 2017, 36(4):1646-1653(in Chinese)
韩泽洲, 苏锐, 史楠, 等. 金属和非金属纳米材料对四膜虫生物毒性研究[J]. 生态毒理学报, 2019, 14(2):91-97 Han Z Z, Su R, Shi N, et al. Biotoxicity of metal and non-metal nanomaterials to tetrahymena[J]. Asian Journal of Ecotoxicology, 2019, 14(2):91-97(in Chinese)
范功端, 陈薇, 郑小梅, 等. 纳米材料对藻细胞毒性效应及致毒机理[J]. 生态毒理学报, 2018, 13(2):23-33 Fan G D, Chen W, Zheng X M, et al. The cytotoxic effects of nanomaterials on algae and its mechanisms[J]. Asian Journal of Ecotoxicology, 2018, 13(2):23-33(in Chinese)
Bai W, Zhang Z Y, Tian W J, et al. Toxicity of zinc oxide nanoparticles to zebrafish embryo:A physicochemical study of toxicity mechanism[J]. Journal of Nanoparticle Research, 2010, 12(5):1645-1654 Jośko I, Oleszczuk P. Manufactured nanomaterials:The connection between environmental fate and toxicity[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(23):2581-2616 Wang S T, Liu Z S, Wang W Q, et al. Fate and transformation of nanoparticles (NPs) in municipal wastewater treatment systems and effects of NPs on the biological treatment of wastewater:A review[J]. RSC Advances, 2017, 7(59):37065-37075 李超, 鲁建江, 童延斌, 等. 喹诺酮抗性基因在城市污水处理系统中的分布及去除[J]. 环境工程学报, 2016, 10(3):1177-1183 Li C, Lu J J, Tong Y B, et al. Removal of quinolone resistance bacteria and corresponding resistance genes in a conventional municipal sewage treatment plant[J]. Chinese Journal of Environmental Engineering, 2016, 10(3):1177-1183(in Chinese)
Munir M, Wong K, Xagoraraki I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan[J]. Water Research, 2011, 45(2):681-693 Xu J, Xu Y, Wang H M, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river[J]. Chemosphere, 2015, 119:1379-1385 毛步云, 黄雅梦, 胡南, 等. 纳米颗粒对污水中耐药细菌的毒性影响及机理[J]. 环境科学与技术, 2018, 41(12):20-29 Mao B Y, Huang Y M, Hu N, et al. Study on the toxicity of nanoparticles on antibiotic resistant bacteria in wastewater:Effects and mechanisms[J]. Environmental Science & Technology, 2018, 41(12):20-29(in Chinese)
王佳慧, 贾丹, 李贺海, 等. 屎肠球菌携带毒力基因及其耐药性检测[J]. 中国兽医科学, 2020, 50(11):1428-1432 Wang J H, Jia D, Li H H, et al. Detection of virulence genes and drug resistance of Enterococcus faecium[J]. Chinese Veterinary Science, 2020, 50(11):1428-1432(in Chinese)
Mannu L, Paba A, Daga E, et al. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin[J]. International Journal of Food Microbiology, 2003, 88(2-3):291-304 郑辉. 屎肠球菌裂解性噬菌体Ec-ZZ2全基因序列的初步分析[D]. 长春:吉林大学, 2017:4-8, 21 Zheng H. Analysis of complete genome of a lytic bacteriophage Ec-ZZ2 infecting Enterococcus faecium[D]. Changchun:Jilin University, 2017:4-8, 21(in Chinese)
Kim H, Yoon S C, Lee T Y, et al. Discriminative cytotoxicity assessment based on various cellular damages[J]. Toxicology Letters, 2009, 184(1):13-17 段链, 顾雯, 王秦, 等. 实时动态监测纳米氧化铜作用于CHL细胞的毒性效应[J]. 癌变·畸变·突变, 2016, 28(3):205-208 , 213 Duan L, Gu W, Wang Q, et al. Real-time dynamic monitoring of cytotoxicity in nano-copper oxide-treated CHL cells[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2016, 28(3):205-208, 213(in Chinese)
Kasemets K, Ivask A, Dubourguier H C, et al. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae[J]. Toxicology in Vitro, 2009, 23(6):1116-1122 项荣, 丁栋博, 范亮亮, 等. 氧化锌的抗菌机制及其安全性研究进展[J]. 中国组织工程研究, 2014, 18(3):470-475 Xiang R, Ding D B, Fan L L, et al. Antibacterial mechanism and safety of zinc oxide[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(3):470-475(in Chinese)
徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112-115 Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2):112-115(in Chinese)
李梅. 水环境中ZnO纳米颗粒对大肠杆菌的毒性及影响因素[D]. 杭州:浙江大学, 2012:30-39 Li M. The toxicity and impact factors of ZnO nanoparicles to Escherichia coli in aquatic environment[D]. Hangzhou:Zhejiang University, 2012:30 -39(in Chinese)
黄俊, 衣俊, 强丽媛, 等. 粒径和包裹物对纳米银在海洋微藻中的毒性影响[J]. 环境科学, 2016, 37(5):1968-1977 Huang J, Yi J, Qiang L Y, et al. Contribution of particle size and surface coating of silver nanoparticles to its toxicity in marine diatom Skeletonema costatum[J]. Environmental Science, 2016, 37(5):1968-1977(in Chinese)
Mudunkotuwa I A, Rupasinghe T, Wu C M, et al. Dissolution of ZnO nanoparticles at circumneutral pH:A study of size effects in the presence and absence of citric acid[J]. Langmuir, 2012, 28(1):396-403 严玉鹏, 唐亚东, 万彪, 等. 颗粒尺寸对纳米氧化物环境行为的影响[J]. 环境科学, 2018, 39(6):2982-2990 Yan Y P, Tang Y D, Wan B, et al. Impact of size on environmental behavior of metal oxide nanoparticles[J]. Environmental Science, 2018, 39(6):2982-2990(in Chinese)
柴汉魁. 四种金属氧化物纳米颗粒对农业土壤微生物的毒性研究[D]. 北京:北京科技大学, 2017:5-8 Chai H K. The toxic effect study of four metal oxide nanoparticles on agricultural soil microorganism[D]. Beijing:University of Science and Technology Beijing, 2017:5 -8(in Chinese)
崔宝臣, 马丽景, 白守礼, 等. 纳米CuO的制备、表征及其应用[J]. 化工进展, 2004, 23(5):541-544 Cui B C, Ma L J, Bai S L, et al. Preparation, characterization and application of nanosized-CuO[J]. Chemical Industry and Engineering Progress, 2004, 23(5):541-544(in Chinese)
杨晓月, 程和发. 水体中金属(氧化物)纳米颗粒的环境行为与污染控制研究进展[J]. 环境化学, 2021, 40(2):436-449 Yang X Y, Cheng H F. Research progress in the environmental behavior and pollution control of metal and metal oxide nanoparticles in water[J]. Environmental Chemistry, 2021, 40(2):436-449(in Chinese)
Ma Z X, Han Y X, Ma Y D, et al. Bactericidal potency of nano-ZnO[J]. Min Metall, 2004, 13(4):57-59 -

计量
- 文章访问数: 1628
- HTML全文浏览数: 1628
- PDF下载数: 44
- 施引文献: 0