·Cl引发萘的大气氧化机制及动力学

陈杰, 马芳芳, 郭熙瑞, 谢宏彬. ·Cl引发萘的大气氧化机制及动力学[J]. 生态毒理学报, 2021, 16(5): 14-23. doi: 10.7524/AJE.1673-5897.20210326002
引用本文: 陈杰, 马芳芳, 郭熙瑞, 谢宏彬. ·Cl引发萘的大气氧化机制及动力学[J]. 生态毒理学报, 2021, 16(5): 14-23. doi: 10.7524/AJE.1673-5897.20210326002
Chen Jie, Ma Fangfang, Guo Xirui, Xie Hongbin. Atmospheric Oxidation Mechanism and Kinetics of Naphthalene Initiated by Chlorine Radicals (·Cl)[J]. Asian journal of ecotoxicology, 2021, 16(5): 14-23. doi: 10.7524/AJE.1673-5897.20210326002
Citation: Chen Jie, Ma Fangfang, Guo Xirui, Xie Hongbin. Atmospheric Oxidation Mechanism and Kinetics of Naphthalene Initiated by Chlorine Radicals (·Cl)[J]. Asian journal of ecotoxicology, 2021, 16(5): 14-23. doi: 10.7524/AJE.1673-5897.20210326002

·Cl引发萘的大气氧化机制及动力学

    作者简介: 陈杰(1995-),男,硕士,研究方向为环境化学,E-mail:jiechen@mail.dlut.edu.cn
    通讯作者: 谢宏彬, E-mail: hbxie@dlut.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(21677028)

  • 中图分类号: X171.5

Atmospheric Oxidation Mechanism and Kinetics of Naphthalene Initiated by Chlorine Radicals (·Cl)

    Corresponding author: Xie Hongbin, hbxie@dlut.edu.cn
  • Fund Project:
  • 摘要: 氯自由基(·Cl)内陆来源的新发现增强了其对转化大气有机污染物的贡献,因此,需要更深入地研究·Cl引发有机污染物的转化机制和动力学。萘(Nap)是一种重要的化学品,也是城市大气浓度最高的多环芳烃,前人针对羟基自由基(·OH)引发Nap的大气氧化开展了研究。然而,目前对于·Cl引发Nap的大气氧化机制还不清楚。本研究通过量子化学计算(ωB97XD/6-311++G(3df,2pd)//ωB97XD/6-31+G(d,p))和动力学模拟相结合的方法研究了·Cl引发Nap的大气氧化机制与动力学,发现·Cl主要加成到Nap分子的C5位置,形成加成中间体·C10H8Cl(R1)。随后,O2加成到R1的C2和C6位置生成过氧自由基(RO2·)R1-2OO-s/a和R1-6OO-s/a(s/a=syn/anti,syn表示O2加成方向和·Cl加成方向相同,anti表示O2加成方向和·Cl加成方向相反)。这4种RO2·的环化、氢迁移和氯迁移反应均很难(能垒>20 kcal·mol-1)发生。因此,在低NO浓度条件下,RO2·主要和HO2·反应生成氢过氧化合物(QOOH)和烷氧自由基(RO·)R1-2O-s/a和R1-6O-s/a;在高NO浓度条件下,RO2·将主要与NO反应生成RO·(R1-2O-s/a和R1-6O-s/a)和有机硝酸酯(C10H8ClNO3)。生成的RO·进一步通过单分子环化反应生成双环产物R1-21O-s/a和R1-61O-s/a。重要的是,生成的有机氢过氧化合物和有机硝酸酯的水生毒性比其母体化合物Nap更强,表明·Cl引发Nap反应增加了Nap释放的环境风险。揭示的机制对理解大气Nap化学及Nap释放导致的环境风险具有重要意义。
  • 加载中
  • Faxon C B, Allen D T. Chlorine chemistry in urban atmospheres:A review[J]. Environmental Chemistry, 2013, 10(3):221
    Young C J, Washenfelder R A, Edwards P M, et al. Chlorine as a primary radical:Evaluation of methods to understand its role in initiation of oxidative cycles[J]. Atmospheric Chemistry and Physics, 2014, 14(7):3427-3440
    Liu C, Ma F F, Elm J, et al. Mechanism and predictive model development of reaction rate constants for N-center radicals with O2[J]. Chemosphere, 2019, 237:124411
    Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry:Supplement Ⅳ:IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry[J]. Atmospheric Environment Part A General Topics, 1992, 26(7):1187-1230
    Keene W C, Khalil M A K, Erickson D J Ⅲ, et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources:Reactive Chlorine Emissions Inventory[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D7):8429-8440
    Finlayson-Pitts B J. Chlorine chronicles[J]. Nature Chemistry, 2013, 5(8):724
    Knipping E M. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J]. Science, 2000, 288(5464):301-306
    Sommariva R, von Glasow R. Multiphase halogen chemistry in the tropical Atlantic Ocean[J]. Environmental Science & Technology, 2012, 46(19):10429-10437
    Lawler M J, Finley B D, Keene W C, et al. Pollution-enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer[J]. Geophysical Research Letters, 2009, 36(8):L08810
    Liu X X, Qu H, Huey L G, et al. High levels of daytime molecular chlorine and nitryl chloride at a rural site on the North China plain[J]. Environmental Science & Technology, 2017, 51(17):9588-9595
    Thornton J A, Kercher J P, Riedel T P, et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry[J]. Nature, 2010, 464(7286):271-274
    Mielke L H, Furgeson A, Osthoff H D. Observation of ClNO2 in a mid-continental urban environment[J]. Environmental Science & Technology, 2011, 45(20):8889-8896
    Zhou W, Zhao J, Ouyang B, et al. Production of N2O5 and ClNO2 in summer in urban Beijing, China[J]. Atmospheric Chemistry and Physics, 2018, 18(16):11581-11597
    Le Breton M, Hallquist Å M, Pathak R K, et al. Chlorine oxidation of VOCs at a semi-rural site in Beijing:Significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl-VOC production[J]. Atmospheric Chemistry and Physics, 2018, 18(17):13013-13030
    Xie H B, Ma F F, Wang Y F, et al. Quantum chemical study on ·Cl-initiated atmospheric degradation of monoethanolamine[J]. Environmental Science & Technology, 2015, 49(22):13246-13255
    Ma F F, Ding Z Z, Elm J, et al. Atmospheric oxidation of piperazine initiated by ·Cl:Unexpected high nitrosamine yield[J]. Environmental Science & Technology, 2018, 52(17):9801-9809
    Guo X R, Ma F F, Liu C, et al. Atmospheric oxidation mechanism and kinetics of isoprene initiated by chlorine radicals:A computational study[J]. Science of the Total Environment, 2020, 712:136330
    Shen H Z, Huang Y, Wang R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology, 2013, 47(12):6415-6424
    Reisen F, Arey J. Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin[J]. Environmental Science & Technology, 2005, 39(1):64-73
    Lammel G, Klánová J, Ilic' P, et al. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales-II. Mass size distributions and gas-particle partitioning[J]. Atmospheric Environment, 2010, 44(38):5022-5027
    杨春, 杨琦, 杨素银, 等. 萘好氧降解菌的筛选及降解特性的初步研究[J]. 环境科学与技术, 2005, 28(6):19-21

    , 110 Yang C, Yang Q, Yang S Y, et al. Strains isolation and study on aerobic biodegradability of naphthalene[J]. Environmental Science and Technology, 2005, 28(6):19-21, 110(in Chinese)

    Sasaki J, Aschmann S M, Kwok E S C, et al. Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene[J]. Environmental Science & Technology, 1997, 31(11):3173-3179
    Huang G C, Liu Y, Shao M, et al. Potentially important contribution of gas-phase oxidation of naphthalene and methylnaphthalene to secondary organic aerosol during haze events in Beijing[J]. Environmental Science & Technology, 2019, 53(3):1235-1244
    Bunce N J, Liu L N, Zhu J, et al. Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase[J]. Environmental Science & Technology, 1997, 31(8):2252-2259
    Riva M, Healy R M, Flaud P M, et al. Gas- and particle-phase products from the chlorine-initiated oxidation of polycyclic aromatic hydrocarbons[J]. The Journal of Physical Chemistry A, 2015, 119(45):11170-11181
    Lee J Y, Lane D A. Unique products from the reaction of naphthalene with the hydroxyl radical[J]. Atmospheric Environment, 2009, 43(32):4886-4893
    Kautzman K E, Surratt J D, Chan M N, et al. Chemical composition of gas- and aerosol-phase products from the photooxidation of naphthalene[J]. The Journal of Physical Chemistry A, 2010, 114(2):913-934
    Ouyang B, Fang H J, Dong W B, et al. Different mechanisms both lead to the production of the naphthalene-OH adduct in the 355 nm and 266 nm laser flash photolysis of the mixed aqueous solution of naphthalene and nitrous acid[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2006, 181(2-3):348-356
    Zhang Z J, Lin L, Wang L M. Atmospheric oxidation mechanism of naphthalene initiated by OH radical. A theoretical study[J]. Physical Chemistry Chemical Physics, 2012, 14(8):2645-2650
    Riva M, Healy R M, Flaud P M, et al. Kinetics of the gas-phase reactions of chlorine atoms with naphthalene, acenaphthene, and acenaphthylene[J]. The Journal of Physical Chemistry A, 2014, 118(20):3535-3540
    刘聪, 马芳芳, 付自豪, 等. ·Cl引发3种环状含有NH结构有机化合物的大气转化机制及动力学[J]. 生态毒理学报, 2019, 14(4):65-72

    Liu C, Ma F F, Fu Z H, et al. Atmospheric transformation mechanism and kinetics of three cyclic NH-containing compounds initiated by ·Cl[J]. Asian Journal of Ecotoxicology, 2019, 14(4):65-72(in Chinese)

    Li C, Xie H B, Chen J W, et al. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH:Overcoming the difficulty in experimental determination[J]. Environmental Science & Technology, 2014, 48(23):13808-13816
    Xu T, Chen J W, Chen X, et al. Prediction models on pKa and base-catalyzed hydrolysis kinetics of parabens:Experimental and quantum chemical studies[J]. Environmental Science & Technology, 2021, 55(9):6022-6031
    Xu T, Chen J W, Wang Z Y, et al. Development of prediction models on base-catalyzed hydrolysis kinetics of phthalate esters with density functional theory calculation[J]. Environmental Science & Technology, 2019, 53(10):5828-5837
    Li C, Chen J W, Xie H B, et al. Effects of atmospheric water on ·OH-initiated oxidation of organophosphate flame retardants:A DFT investigation on TCPP[J]. Environmental Science & Technology, 2017, 51(9):5043-5051
    United States Environmental Protection Agency (US EPA). ECOSAR V2.0.. https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model
    Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09. Wallingford, CT:Gaussian, Inc, 2009
    Chai J D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Physical Chemistry Chemical Physics, 2008, 10(44):6615
    Barker J R, Nguyen T L, Stanton J F, et al. MultiWell program suite. Ann Arbor, MI:University of Michigan, 2014
    Barker J R. Multiple-well, multiple-path unimolecular reaction systems. Ⅰ. MultiWell computer program suite[J]. International Journal of Chemical Kinetics, 2001, 33(4):232-245
    Carl E. The penetration of a potential barrier by electrons[J]. Physical Review, 1930, 35(11):1303-1309
    Raman S, Ashcraft R W, Vial M, et al. Oxidation of hydroxylamine by nitrous and nitric acids. Model development from first principle SCRF calculations[J]. The Journal of Physical Chemistry A, 2005, 109(38):8526-8536
    Braña P, Sordo J A. Mechanistic aspects of the abstraction of an allylic hydrogen in the chlorine atom reaction with 2-methyl-1, 3-butadiene (isoprene)[J]. Journal of the American Chemical Society, 2001, 123(42):10348-10353
    Sun C H, Xu B E, Zhang S W. Atmospheric reaction of Cl + methacrolein:A theoretical study on the mechanism, and pressure- and temperature-dependent rate constants[J]. The Journal of Physical Chemistry A, 2014, 118(20):3541-3551
    Wang L Y, Wang L M. Atmospheric oxidation mechanism of acenaphthene initiated by OH radicals[J]. Atmospheric Environment, 2020, 243:117870
    Dang J, He M X. Mechanisms and kinetic parameters for the gas-phase reactions of anthracene and pyrene with Cl atoms in the presence of NOx[J]. RSC Advances, 2016, 6(21):17345-17353
    Wennberg P O, Bates K H, Crounse J D, et al. Gas-phase reactions of isoprene and its major oxidation products[J]. Chemical Reviews, 2018, 118(7):3337-3390
    Patchen A K, Pennino M J, Elrod M J. Overall rate constant measurements of the reaction of chloroalkylperoxy radicals with nitric oxide[J]. The Journal of Physical Chemistry A, 2005, 109(26):5865-5871
    Fu Z H, Xie H B, Elm J, et al. Formation of low-volatile products and unexpected high formaldehyde yield from the atmospheric oxidation of methylsiloxanes[J]. Environmental Science & Technology, 2020, 54(12):7136-7145
    Atkinson R. Atmospheric reactions of alkoxy and -hydroxyalkoxy radicals[J]. International Journal of Chemical Kinetics, 1997, 29(2):99-111
  • 加载中
计量
  • 文章访问数:  4996
  • HTML全文浏览数:  4996
  • PDF下载数:  135
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-03-26
陈杰, 马芳芳, 郭熙瑞, 谢宏彬. ·Cl引发萘的大气氧化机制及动力学[J]. 生态毒理学报, 2021, 16(5): 14-23. doi: 10.7524/AJE.1673-5897.20210326002
引用本文: 陈杰, 马芳芳, 郭熙瑞, 谢宏彬. ·Cl引发萘的大气氧化机制及动力学[J]. 生态毒理学报, 2021, 16(5): 14-23. doi: 10.7524/AJE.1673-5897.20210326002
Chen Jie, Ma Fangfang, Guo Xirui, Xie Hongbin. Atmospheric Oxidation Mechanism and Kinetics of Naphthalene Initiated by Chlorine Radicals (·Cl)[J]. Asian journal of ecotoxicology, 2021, 16(5): 14-23. doi: 10.7524/AJE.1673-5897.20210326002
Citation: Chen Jie, Ma Fangfang, Guo Xirui, Xie Hongbin. Atmospheric Oxidation Mechanism and Kinetics of Naphthalene Initiated by Chlorine Radicals (·Cl)[J]. Asian journal of ecotoxicology, 2021, 16(5): 14-23. doi: 10.7524/AJE.1673-5897.20210326002

·Cl引发萘的大气氧化机制及动力学

    通讯作者: 谢宏彬, E-mail: hbxie@dlut.edu.cn
    作者简介: 陈杰(1995-),男,硕士,研究方向为环境化学,E-mail:jiechen@mail.dlut.edu.cn
  • 大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连 116024
基金项目:

国家自然科学基金资助项目(21677028)

摘要: 氯自由基(·Cl)内陆来源的新发现增强了其对转化大气有机污染物的贡献,因此,需要更深入地研究·Cl引发有机污染物的转化机制和动力学。萘(Nap)是一种重要的化学品,也是城市大气浓度最高的多环芳烃,前人针对羟基自由基(·OH)引发Nap的大气氧化开展了研究。然而,目前对于·Cl引发Nap的大气氧化机制还不清楚。本研究通过量子化学计算(ωB97XD/6-311++G(3df,2pd)//ωB97XD/6-31+G(d,p))和动力学模拟相结合的方法研究了·Cl引发Nap的大气氧化机制与动力学,发现·Cl主要加成到Nap分子的C5位置,形成加成中间体·C10H8Cl(R1)。随后,O2加成到R1的C2和C6位置生成过氧自由基(RO2·)R1-2OO-s/a和R1-6OO-s/a(s/a=syn/anti,syn表示O2加成方向和·Cl加成方向相同,anti表示O2加成方向和·Cl加成方向相反)。这4种RO2·的环化、氢迁移和氯迁移反应均很难(能垒>20 kcal·mol-1)发生。因此,在低NO浓度条件下,RO2·主要和HO2·反应生成氢过氧化合物(QOOH)和烷氧自由基(RO·)R1-2O-s/a和R1-6O-s/a;在高NO浓度条件下,RO2·将主要与NO反应生成RO·(R1-2O-s/a和R1-6O-s/a)和有机硝酸酯(C10H8ClNO3)。生成的RO·进一步通过单分子环化反应生成双环产物R1-21O-s/a和R1-61O-s/a。重要的是,生成的有机氢过氧化合物和有机硝酸酯的水生毒性比其母体化合物Nap更强,表明·Cl引发Nap反应增加了Nap释放的环境风险。揭示的机制对理解大气Nap化学及Nap释放导致的环境风险具有重要意义。

English Abstract

参考文献 (50)

返回顶部

目录

/

返回文章
返回