Faxon C B, Allen D T. Chlorine chemistry in urban atmospheres:A review[J]. Environmental Chemistry, 2013, 10(3):221
Young C J, Washenfelder R A, Edwards P M, et al. Chlorine as a primary radical:Evaluation of methods to understand its role in initiation of oxidative cycles[J]. Atmospheric Chemistry and Physics, 2014, 14(7):3427-3440
Liu C, Ma F F, Elm J, et al. Mechanism and predictive model development of reaction rate constants for N-center radicals with O2[J]. Chemosphere, 2019, 237:124411
Atkinson R, Baulch D L, Cox R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry:Supplement Ⅳ:IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry[J]. Atmospheric Environment Part A General Topics, 1992, 26(7):1187-1230
Keene W C, Khalil M A K, Erickson D J Ⅲ, et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources:Reactive Chlorine Emissions Inventory[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D7):8429-8440
Finlayson-Pitts B J. Chlorine chronicles[J]. Nature Chemistry, 2013, 5(8):724
Knipping E M. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J]. Science, 2000, 288(5464):301-306
Sommariva R, von Glasow R. Multiphase halogen chemistry in the tropical Atlantic Ocean[J]. Environmental Science & Technology, 2012, 46(19):10429-10437
Lawler M J, Finley B D, Keene W C, et al. Pollution-enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer[J]. Geophysical Research Letters, 2009, 36(8):L08810
Liu X X, Qu H, Huey L G, et al. High levels of daytime molecular chlorine and nitryl chloride at a rural site on the North China plain[J]. Environmental Science & Technology, 2017, 51(17):9588-9595
Thornton J A, Kercher J P, Riedel T P, et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry[J]. Nature, 2010, 464(7286):271-274
Mielke L H, Furgeson A, Osthoff H D. Observation of ClNO2 in a mid-continental urban environment[J]. Environmental Science & Technology, 2011, 45(20):8889-8896
Zhou W, Zhao J, Ouyang B, et al. Production of N2O5 and ClNO2 in summer in urban Beijing, China[J]. Atmospheric Chemistry and Physics, 2018, 18(16):11581-11597
Le Breton M, Hallquist Å M, Pathak R K, et al. Chlorine oxidation of VOCs at a semi-rural site in Beijing:Significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl-VOC production[J]. Atmospheric Chemistry and Physics, 2018, 18(17):13013-13030
Xie H B, Ma F F, Wang Y F, et al. Quantum chemical study on ·Cl-initiated atmospheric degradation of monoethanolamine[J]. Environmental Science & Technology, 2015, 49(22):13246-13255
Ma F F, Ding Z Z, Elm J, et al. Atmospheric oxidation of piperazine initiated by ·Cl:Unexpected high nitrosamine yield[J]. Environmental Science & Technology, 2018, 52(17):9801-9809
Guo X R, Ma F F, Liu C, et al. Atmospheric oxidation mechanism and kinetics of isoprene initiated by chlorine radicals:A computational study[J]. Science of the Total Environment, 2020, 712:136330
Shen H Z, Huang Y, Wang R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology, 2013, 47(12):6415-6424
Reisen F, Arey J. Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin[J]. Environmental Science & Technology, 2005, 39(1):64-73
Lammel G, Klánová J, Ilic' P, et al. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales-II. Mass size distributions and gas-particle partitioning[J]. Atmospheric Environment, 2010, 44(38):5022-5027
杨春, 杨琦, 杨素银, 等. 萘好氧降解菌的筛选及降解特性的初步研究[J]. 环境科学与技术, 2005, 28(6):19-21 , 110 Yang C, Yang Q, Yang S Y, et al. Strains isolation and study on aerobic biodegradability of naphthalene[J]. Environmental Science and Technology, 2005, 28(6):19-21, 110(in Chinese)
Sasaki J, Aschmann S M, Kwok E S C, et al. Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene[J]. Environmental Science & Technology, 1997, 31(11):3173-3179
Huang G C, Liu Y, Shao M, et al. Potentially important contribution of gas-phase oxidation of naphthalene and methylnaphthalene to secondary organic aerosol during haze events in Beijing[J]. Environmental Science & Technology, 2019, 53(3):1235-1244
Bunce N J, Liu L N, Zhu J, et al. Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase[J]. Environmental Science & Technology, 1997, 31(8):2252-2259
Riva M, Healy R M, Flaud P M, et al. Gas- and particle-phase products from the chlorine-initiated oxidation of polycyclic aromatic hydrocarbons[J]. The Journal of Physical Chemistry A, 2015, 119(45):11170-11181
Lee J Y, Lane D A. Unique products from the reaction of naphthalene with the hydroxyl radical[J]. Atmospheric Environment, 2009, 43(32):4886-4893
Kautzman K E, Surratt J D, Chan M N, et al. Chemical composition of gas- and aerosol-phase products from the photooxidation of naphthalene[J]. The Journal of Physical Chemistry A, 2010, 114(2):913-934
Ouyang B, Fang H J, Dong W B, et al. Different mechanisms both lead to the production of the naphthalene-OH adduct in the 355 nm and 266 nm laser flash photolysis of the mixed aqueous solution of naphthalene and nitrous acid[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2006, 181(2-3):348-356
Zhang Z J, Lin L, Wang L M. Atmospheric oxidation mechanism of naphthalene initiated by OH radical. A theoretical study[J]. Physical Chemistry Chemical Physics, 2012, 14(8):2645-2650
Riva M, Healy R M, Flaud P M, et al. Kinetics of the gas-phase reactions of chlorine atoms with naphthalene, acenaphthene, and acenaphthylene[J]. The Journal of Physical Chemistry A, 2014, 118(20):3535-3540
刘聪, 马芳芳, 付自豪, 等. ·Cl引发3种环状含有NH结构有机化合物的大气转化机制及动力学[J]. 生态毒理学报, 2019, 14(4):65-72 Liu C, Ma F F, Fu Z H, et al. Atmospheric transformation mechanism and kinetics of three cyclic NH-containing compounds initiated by ·Cl[J]. Asian Journal of Ecotoxicology, 2019, 14(4):65-72(in Chinese)
Li C, Xie H B, Chen J W, et al. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH:Overcoming the difficulty in experimental determination[J]. Environmental Science & Technology, 2014, 48(23):13808-13816
Xu T, Chen J W, Chen X, et al. Prediction models on pKa and base-catalyzed hydrolysis kinetics of parabens:Experimental and quantum chemical studies[J]. Environmental Science & Technology, 2021, 55(9):6022-6031
Xu T, Chen J W, Wang Z Y, et al. Development of prediction models on base-catalyzed hydrolysis kinetics of phthalate esters with density functional theory calculation[J]. Environmental Science & Technology, 2019, 53(10):5828-5837
Li C, Chen J W, Xie H B, et al. Effects of atmospheric water on ·OH-initiated oxidation of organophosphate flame retardants:A DFT investigation on TCPP[J]. Environmental Science & Technology, 2017, 51(9):5043-5051
United States Environmental Protection Agency (US EPA). ECOSAR V2.0.. https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model
Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09. Wallingford, CT:Gaussian, Inc, 2009
Chai J D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Physical Chemistry Chemical Physics, 2008, 10(44):6615
Barker J R, Nguyen T L, Stanton J F, et al. MultiWell program suite. Ann Arbor, MI:University of Michigan, 2014
Barker J R. Multiple-well, multiple-path unimolecular reaction systems. Ⅰ. MultiWell computer program suite[J]. International Journal of Chemical Kinetics, 2001, 33(4):232-245
Carl E. The penetration of a potential barrier by electrons[J]. Physical Review, 1930, 35(11):1303-1309
Raman S, Ashcraft R W, Vial M, et al. Oxidation of hydroxylamine by nitrous and nitric acids. Model development from first principle SCRF calculations[J]. The Journal of Physical Chemistry A, 2005, 109(38):8526-8536
Braña P, Sordo J A. Mechanistic aspects of the abstraction of an allylic hydrogen in the chlorine atom reaction with 2-methyl-1, 3-butadiene (isoprene)[J]. Journal of the American Chemical Society, 2001, 123(42):10348-10353
Sun C H, Xu B E, Zhang S W. Atmospheric reaction of Cl + methacrolein:A theoretical study on the mechanism, and pressure- and temperature-dependent rate constants[J]. The Journal of Physical Chemistry A, 2014, 118(20):3541-3551
Wang L Y, Wang L M. Atmospheric oxidation mechanism of acenaphthene initiated by OH radicals[J]. Atmospheric Environment, 2020, 243:117870
Dang J, He M X. Mechanisms and kinetic parameters for the gas-phase reactions of anthracene and pyrene with Cl atoms in the presence of NOx[J]. RSC Advances, 2016, 6(21):17345-17353
Wennberg P O, Bates K H, Crounse J D, et al. Gas-phase reactions of isoprene and its major oxidation products[J]. Chemical Reviews, 2018, 118(7):3337-3390
Patchen A K, Pennino M J, Elrod M J. Overall rate constant measurements of the reaction of chloroalkylperoxy radicals with nitric oxide[J]. The Journal of Physical Chemistry A, 2005, 109(26):5865-5871
Fu Z H, Xie H B, Elm J, et al. Formation of low-volatile products and unexpected high formaldehyde yield from the atmospheric oxidation of methylsiloxanes[J]. Environmental Science & Technology, 2020, 54(12):7136-7145
Atkinson R. Atmospheric reactions of alkoxy and -hydroxyalkoxy radicals[J]. International Journal of Chemical Kinetics, 1997, 29(2):99-111