可用于表征可电离化合物离子化影响的描述符研究进展
Progress in Descriptors Used to Correct Influence of Ionization for Ionizable Organic Chemicals
-
摘要: 在人为有意生产的化学品或无意识产生的化学品中,可电离有机化合物(IOCs)均占有较大比重。在环境水体、生理或实验pH条件下,IOCs可解离为分子和离子形态。研究表明,IOCs的分子和离子形态均对其表观物理化学、环境归趋和行为、生态和健康毒性效应参数具有不可忽视的影响,因而在开展IOCs相关实验或理论研究时不应忽略离子化的影响。在构建IOCs相关预测模型时,核心是如何表征离子化的影响。本文从描述符入手,总结了可用于表征IOCs离子化影响的4类描述符,即酸碱解离常数(pKa)及其衍生参数(分子态和离子态的比例分数(δ分子和δ离子))、考虑离子化影响的分配系数包括正辛醇-水分布系数(logDOW(pH))和进行形态修正的脂质体-水分配系数(logDlip/w(pH))、考虑离子参数的多参数线性自由能关系(离子描述符J+和J-)、基于形态修正的量化参数,并展望了表征IOCs离子化影响的未来研究重点。Abstract: Ionogenic organic chemicals (IOCs) are organic compounds with one or more ionizable function groups in their molecular structures. A large fraction of artificial chemicals or unintentional production chemicals are IOCs. Under the environmental, physiological and experimental pH condition, the IOCs may dissociate and exist as a mixture of neutral and ionized forms. It had been well documented that the neutral and ionized species of IOCs indeed had distinct physicochemical properties, environmental fate and behavior, ecological and health toxic effects. The observed parameters, properties, or endpoints influenced by ionization include but not limited to partition coefficients, photolysis rate constant, rate constants of hydroxyl radical, the adsorption capability to zeolite, bioconcentration, aquatic toxicity on fish, Daphnia magna, algae, Tetrahymena pyriformis, protein binding interaction, and so on. In addition, the previous studies also implied that both forms of IOCs may contribute to their observed aforementioned apparent parameters. Thus, ionization should not be ignored in the related experimental and theoretical research of IOCs. Hitherto, how to correct the influence of ionization is one of the critical issues in deriving the predictive models (e.g. (quantitative) structure-activity/property relationship ((Q)SA/PR)) for IOCs. In this work, the available descriptors could be used to describe the effect of ionization for IOCs in the modeling were reviewed and summarized. Those descriptors include acid dissociation constant (pKa) and derived parameters (the fractions of the neutral (δM) and ionized species (δI) at a given pH), distribution coefficient (the n-octanol/water distribution coefficient (logDOW(pH)) and speciation-corrected liposome-water distribution ratios (logDlip/w(pH))), ionic descriptors in polyparameter linear free energy relationship (pp-LFER) equation (ionic descriptors J+ and J-), chemical form adjusted quantum chemical descriptors. Further investigations in correcting the ionization of IOCs were further discussed.
-
-
Trapp S, Franco A, MacKay D. Activity-based concept for transport and partitioning of ionizing organics[J]. Environmental Science & Technology, 2010, 44(16):6123-6129 Armitage J M, Arnot J A, Wania F, et al. Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish[J]. Environmental Toxicology and Chemistry, 2013, 32(1):115-128 Bittermann K, Spycher S, Goss K U. Comparison of different models predicting the phospholipid-membrane water partition coefficients of charged compounds[J]. Chemosphere, 2016, 144:382-391 Manallack D T, Prankerd R J, Nassta G C, et al. A chemogenomic analysis of ionization constants-implications for drug discovery[J]. ChemMedChem, 2013, 8(2):242-255 Karlsson M V, Carter L J, Agatz A, et al. Novel approach for characterizing pH-dependent uptake of ionizable chemicals in aquatic organisms[J]. Environmental Science & Technology, 2017, 51(12):6965-6971 Liu X Y, Chen L, Yang M T, et al. The occurrence, characteristics, transformation and control of aromatic disinfection by-products:A review[J]. Water Research, 2020, 184:116076 European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). Environmental exposure assessment of ionizable organic compounds. Technical Report No. 123[R]. Brussels:ECETOC, 2013 席越, 杨先海, 张红雨, 等. 基于形态修正的描述符构建可电离化合物对大型溞急性毒性的QSAR模型[J]. 生态毒理学报, 2019, 14(4):183-191 Xi Y, Yang X H, Zhang H Y, et al. Development of acute toxicity of Daphnia magna QSAR models for ionogenic organic chemicals based on chemical form adjusted descriptors[J]. Asian Journal of Ecotoxicology, 2019, 14(4):183-191(in Chinese)
United States Environmental Protection Agency (US EPA). Estimation Programs Interface SuiteTM for Microsoft® Windows, V 4.10. Washington DC:US EPA, 2012 Bittner L, Klüver N, Henneberger L, et al. Combined ion-trapping and mass balance models to describe the pH-dependent uptake and toxicity of acidic and basic pharmaceuticals in zebrafish embryos (Danio rerio)[J]. Environmental Science & Technology, 2019, 53(13):7877-7886 Henneberger L, Goss K U. Environmental Sorption Behavior of Ionic and Ionizable Organic Chemicals[J]. Reviews of Environmental Contamination and Toxicology, 2019, 253:1-21 Manallack D T, Prankerd R J, Yuriev E, et al. The significance of acid/base properties in drug discovery[J]. Chemical Society Reviews, 2013, 42(2):485-496 Strope C L, Mansouri K, Clewell H J Ⅲ, et al. High-throughput in-silico prediction of ionization equilibria for pharmacokinetic modeling[J]. Science of the Total Environment, 2018, 615:150-160 徐世积, 何影, 李思齐, 等. 环境中可电离有机化合物生物有效性研究进展[J]. 生态与农村环境学报, 2017, 33(5):385-395 Xu S J, He Y, Li S Q, et al. Review of researches on bioavailability of ionizable organic compounds in environment[J]. Journal of Ecology and Rural Environment, 2017, 33(5):385-395(in Chinese)
Franco A, Fu W J, Trapp S. Influence of soil pH on the sorption of ionizable chemicals:Modeling advances[J]. Environmental Toxicology and Chemistry, 2009, 28(3):458-464 Tülp H C, Fenner K, Schwarzenbach R P, et al. pH-dependent sorption of acidic organic chemicals to soil organic matter[J]. Environmental Science & Technology, 2009, 43(24):9189-9195 Endo S, Goss K U. Serum albumin binding of structurally diverse neutral organic compounds:Data and models[J]. Chemical Research in Toxicology, 2011, 24(12):2293-2301 Henneberger L, Goss K U, Endo S. Equilibrium sorption of structurally diverse organic ions to bovine serum albumin[J]. Environmental Science & Technology, 2016, 50(10):5119-5126 Endo S, Bauerfeind J, Goss K U. Partitioning of neutral organic compounds to structural proteins[J]. Environmental Science & Technology, 2012, 46(22):12697-12703 Henneberger L, Goss K U, Endo S. Partitioning of organic ions to muscle protein:Experimental data, modeling, and implications for in vivo distribution of organic ions[J]. Environmental Science & Technology, 2016, 50(13):7029-7036 Droge S T J, Hermens J L M, Gutsell S, et al. Predicting the phospholipophilicity of monoprotic positively charged amines[J]. Environmental Science Processes & Impacts, 2017, 19(3):307-323 Neuwoehner J, Escher B I. The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model[J]. Aquatic Toxicology, 2011, 101(1):266-275 Endo S, Escher B I, Goss K U. Capacities of membrane lipids to accumulate neutral organic chemicals[J]. Environmental Science & Technology, 2011, 45(14):5912-5921 Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin[J]. Environmental Science & Technology, 2013, 47(9):4284-4290 Xie Q, Chen J W, Zhao H X, et al. Different photolysis kinetics and photooxidation reactivities of neutral and anionic hydroxylated polybrominated diphenyl ethers[J]. Chemosphere, 2013, 90(2):188-194 Luo X, Wei X X, Chen J W, et al. Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides:Combined experimental and QSAR studies[J]. Water Research, 2019, 166:115083 Xie J, Meng W N, Wu D Y, et al. Removal of organic pollutants by surfactant modified zeolite:Comparison between ionizable phenolic compounds and non-ionizable organic compounds[J]. Journal of Hazardous Materials, 2012, 231-232:57-63 Trapp S. Bioaccumulation of Polar and Ionizable Compounds in Plants[M]//Ecotoxicology Modeling. Boston, MA:Springer US, 2009:299-353 Cronin M T D, Zhao Y H, Yu R L. pH-Dependence and QSAR analysis of the toxicity of phenols and anilines to Daphnia magna[J]. Environmental Toxicology, 2000, 15(2):140-148 He Q, Wang X H, Sun P, et al. Acute and chronic toxicity of tetrabromobisphenol A to three aquatic species under different pH conditions[J]. Aquatic Toxicology, 2015, 164:145-154 Kamaya Y, Fukaya Y, Suzuki K. Acute toxicity of benzoic acids to the crustacean Daphnia magna[J]. Chemosphere, 2005, 59(2):255-261 Zhao Y H, Yuan X, Su L M, et al. Classification of toxicity of phenols to Tetrahymena pyriformis and subsequent derivation of QSARs from hydrophobic, ionization and electronic parameters[J]. Chemosphere, 2009, 75(7):866-871 Crisan M E, Bourosh P, Maffei M E, et al. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid[J]. PLoS One, 2014, 9(7):e101892 Yang X H, Xie H B, Chen J W, et al. Anionic phenolic compounds bind stronger with transthyretin than their neutral forms:Nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals[J]. Chemical Research in Toxicology, 2013, 26(9):1340-1347 Nakamura Y, Yamamoto H, Sekizawa J, et al. The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes):Acute toxicity in fish larvae and bioaccumulation in juvenile fish[J]. Chemosphere, 2008, 70(5):865-873 Rendal C, Kusk K O, Trapp S. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals[J]. Environmental Toxicology and Chemistry, 2011, 30(11):2395-2406 Xing L Q, Liu H L, Giesy J P, et al. pH-dependent aquatic criteria for 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol[J]. Science of the Total Environment, 2012, 441:125-131 Yang X H, Lyakurwa F, Xie H B, et al. Different binding mechanisms of neutral and anionic poly-/perfluorinated chemicals to human transthyretin revealed by in silico models[J]. Chemosphere, 2017, 182:574-583 Goss K U, Bittermann K, Henneberger L, et al. Equilibrium biopartitioning of organic anions-A case study for humans and fish[J]. Chemosphere, 2018, 199:174-181 Seward J R, Schultz T W. QSAR analyses of the toxicity of aliphatic carboxylic acids and salts to Tetrahymena pyriformis[J]. SAR and QSAR in Environmental Research, 1999, 10(6):557-567 Bostr m M L, Berglund O. Influence of pH-dependent aquatic toxicity of ionizable pharmaceuticals on risk assessments over environmental pH ranges[J]. Water Research, 2015, 72:154-161 Zhao Y H, Ji G D, Cronin M T D, et al. QSAR study of the toxicity of benzoic acids to Vibrio fischeri, Daphnia magna and carp[J]. Science of the Total Environment, 1998, 216(3):205-215 Card M L, Gomez-Alvarez V, Lee W H, et al. History of EPI SuiteTM and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments[J]. Environmental Science Processes & Impacts, 2017, 19(3):203-212 Judson R, Richard A, Dix D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695 王中钰, 陈景文, 乔显亮, 等. 面向化学品风险评价的计算(预测)毒理学[J]. 中国科学:化学, 2016, 46(2):222-240 Wang Z Y, Chen J W, Qiao X L, et al. Computational toxicology:Oriented for chemicals risk assessment[J]. Scientia Sinica (Chimica), 2016, 46(2):222-240(in Chinese)
Chen C C, Kuo D T F. Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod[J]. Environmental Toxicology and Chemistry, 2018, 37(5):1378-1386 Worth A P, Bassan A, De Bruijn J, et al. The role of the European Chemicals Bureau in promoting the regulatory use of (Q)SAR methods[J]. SAR and QSAR in Environmental Research, 2007, 18(1-2):111-125 Cronin M T D. (Q)SARs to predict environmental toxicities:Current status and future needs[J]. Environmental Science Processes & Impacts, 2017, 19(3):213-220 Cronin M T D, Richarz A N, Schultz T W. Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction[J]. Regulatory Toxicology and Pharmacology, 2019, 106:90-104 Wang Z Y, Chen J W. Background, Tasks, Modeling Methods, and Challenges for Computational Toxicology[M]//Challenges and Advances in Computational Chemistry and Physics. Cham:Springer International Publishing, 2019:15-36 European Commission. Technicalguidance document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market Part Ⅱ.[S]. Brussel:European Communities, 2003 Trapp S, Schwartz S. Proposals to overcome limitations in the EU chemical risk assessment scheme[J]. Chemosphere, 2000, 41(7):965-971 Huchthausen J, Mühlenbrink M, K nig M, et al. Experimental exposure assessment of ionizable organic chemicals in in vitro cell-based bioassays[J]. Chemical Research in Toxicology, 2020, 33(7):1845-1854 Aalizadeh R, von der Ohe P C, Thomaidis N S. Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by Ant Colony Optimization-Support Vector Machine QSTR models[J]. Environmental Science:Processes & Impacts, 2017, 19(3):438-448 Vitale C M, Di Guardo A. A review of the predictive models estimating association of neutral and ionizable organic chemicals with dissolved organic carbon[J]. Science of the Total Environment, 2019, 666:1022-1032 Katritzky A R, Kuanar M, Slavov S, et al. Quantitative correlation of physical and chemical properties with chemical structure:Utility for prediction[J]. Chemical Reviews, 2010, 110(10):5714-5789 Todeschini R, Consonni V. Descriptors from Molecular Geometry[M]//Handbook of Chemoinformatics. Weinheim, Germany:Wiley-VCH Verlag GmbH, 2008:1004-1033 Mansouri K, Cariello N F, Korotcov A, et al. Open-source QSAR models for pKa prediction using multiple machine learning approaches[J]. Journal of Cheminformatics, 2019, 11(1):1-20 Zvinavashe E, Murk A J, Rietjens I M C M. Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity[J]. Chemical Research in Toxicology, 2008, 21(12):2229-2236 Schaffer M, Licha T. A guideline for the identification of environmentally relevant, ionizable organic molecule species[J]. Chemosphere, 2014, 103:12-25 Fujita T. The analysis of physiological activity of substituted phenols with substituent Constants1[J]. Journal of Medicinal Chemistry, 1966, 9(6):797-803 Lee Y G, Hwang S H, Kim S D. Predicting the toxicity of substituted phenols to aquatic species and its changes in the stream and effluent waters[J]. Archives of Environmental Contamination and Toxicology, 2006, 50(2):213-219 Ramos-Nino M E, Clifford M N, Adams M R. Quantitative structure activity relationship for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes[J]. The Journal of Applied Bacteriology, 1996, 80(3):303-310 Nolte T M, Ragas A M J. A review of quantitative structure-property relationships for the fate of ionizable organic chemicals in water matrices and identification of knowledge gaps[J]. Environmental Science Processes & Impacts, 2017, 19(3):221-246 Wayne Schultz T. The use of the ionization constant (pKa) in selecting models of toxicity in phenols[J]. Ecotoxicology and Environmental Safety, 1987, 14(2):178-183 Schultz T W, Lin D T, Wesley S K. QSARs for monosubstituted phenols and the polar narcosis mechanism of toxicity[J]. Quality Assurance, 1992, 1(2):132-143 Schultz T W, Bearden A P, Jaworska J S. A novel QSAR approach for estimating toxicity of phenols[J]. SAR and QSAR in Environmental Research, 1996, 5(2):99-112 Vierke L, Berger U, Cousins I T. Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport[J]. Environmental Science & Technology, 2013, 47(19):11032-11039 Goss K U. The pKa values of PFOA and other highly fluorinated carboxylic acids[J]. Environmental Science & Technology, 2008, 42(2):456-458 Qin W C, Su L M, Zhang X J, et al. Toxicity of organic pollutants to seven aquatic organisms:Effect of polarity and ionization[J]. SAR and QSAR in Environmental Research, 2010, 21(5-6):389-401 Zhao Y H, Zhang X J, Wen Y, et al. Toxicity of organic chemicals to Tetrahymena pyriformis:Effect of polarity and ionization on toxicity[J]. Chemosphere, 2010, 79(1):72-77 Su L, Fu L, He J, et al. Comparison of Tetrahymena pyriformis toxicity based on hydrophobicity, polarity, ionization and reactivity of class-based compounds[J]. SAR and QSAR in Environmental Research, 2012, 23(5-6):537-552 Franco A, Trapp S. Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals[J]. Environmental Toxicology and Chemistry, 2008, 27(10):1995-2004 Vitale C M, Di Guardo A. Predicting dissolved organic carbon partition and distribution coefficients of neutral and ionizable organic chemicals[J]. Science of the Total Environment, 2019, 658:1056-1063 Hansch C, Maloney P P, Fujita T, et al. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients[J]. Nature, 1962, 194(4824):178-180 范莱文, 韦梅尔. 化学品风险评估[M]. 北京:化学工业出版社, 2010:280-350 Scherrer R A, Howard S M. Use of distribution coefficients in quantitative structure-activity relations[J]. Journal of Medicinal Chemistry, 1977, 20(1):53-58 Kah M, Brown C D. LogD:lipophilicity for ionisable compounds[J]. Chemosphere, 2008, 72(10):1401-1408 Abbasitabar F, Zare-Shahabadi V. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach[J]. Chemosphere, 2017, 172:249-259 Ou W, Liu H H, He J Y, et al. Development of chicken and fish muscle protein-Water partition coefficients predictive models for ionogenic and neutral organic chemicals[J]. Ecotoxicology and Environmental Safety, 2018, 157:128-133 Kah M, Brown C D. Prediction of the adsorption of ionizable pesticides in soils[J]. Journal of Agricultural and Food Chemistry, 2007, 55(6):2312-2322 Wang Y Q, Liu H H, Yang X H, et al. Aquatic toxicity and aquatic ecological risk assessment of wastewater-derived halogenated phenolic disinfection byproducts[J]. Science of the Total Environment, 2021, Doi:10.1016/j.scitotenv.2021.151089 Bayliss M K, Butler J, Feldman P L, et al. Quality guidelines for oral drug candidates:Dose, solubility and lipophilicity[J]. Drug Discovery Today, 2016, 21(10):1719-1727 Li J J, Zhang X J, Wang X H, et al. Discrimination of excess toxicity from baseline level for ionizable compounds:Effect of pH[J]. Chemosphere, 2016, 147:382-388 Lin S Y, Yang X H, Liu H H. Development of liposome/water partition coefficients predictive models for neutral and ionogenic organic chemicals[J]. Ecotoxicology and Environmental Safety, 2019, 179:40-49 Escher B I, Schwarzenbach R P, Westall J C. Evaluation of liposome-water partitioning of organic acids and bases. 2. Comparison of experimental determination methods[J]. Environmental Science & Technology, 2000, 34(18):3962-3968 Baumer A, Bittermann K, Klüver N, et al. Baseline toxicity and ion-trapping models to describe the pH-dependence of bacterial toxicity of pharmaceuticals[J]. Environmental Science Processes & Impacts, 2017, 19(7):901-916 Schweigert N, Hunziker R W, Escher B I, et al. Acute toxicity of (chloro-) catechols and (chloro-) catechol-copper combinations in Escherichia coli corresponds to their membrane toxicity in vitro[J]. Environmental Toxicology and Chemistry, 2001, 20(2):239-247 Klüver N, Bittermann K, Escher B I. QSAR for baseline toxicity and classification of specific modes of action of ionizable organic chemicals in the zebrafish embryo toxicity test[J]. Aquatic Toxicology, 2019, 207:110-119 Escher B I, Baumer A, Bittermann K, et al. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri[J]. Environmental Science Processes & Impacts, 2017, 19(3):414-428 Ng C A, Hungerbühler K. Bioaccumulation of perfluorinated alkyl acids:Observations and models[J]. Environmental Science & Technology, 2014, 48(9):4637-4648 Zhang K, Wiseman S, Giesy J P, et al. Bioconcentration of dissolved organic compounds from oil sands process-affected water by medaka (Oryzias latipes):Importance of partitioning to phospholipids[J]. Environmental Science & Technology, 2016, 50(12):6574-6582 Timmer N, Droge S T J. Sorption of cationic surfactants to artificial cell membranes:Comparing phospholipid bilayers with monolayer coatings and molecular simulations[J]. Environmental Science & Technology, 2017, 51(5):2890-2898 Endo S, Goss K U. Applications of polyparameter linear free energy relationships in environmental chemistry[J]. Environmental Science & Technology, 2014, 48(21):12477-12491 Abraham M H. Scales of solute hydrogen-bonding:Their construction and application to physicochemical and biochemical processes[J]. Chemical Society Reviews, 1993, 22(2):73 Abraham M H, Ibrahim A, Zissimos A M. Determination of sets of solute descriptors from chromatographic measurements[J]. Journal of Chromatography A, 2004, 1037(1-2):29-47 Goss K U. Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER)[J]. Fluid Phase Equilibria, 2005, 233(1):19-22 Abraham M H, Zhao Y H. Determination of solvation descriptors for ionic species:Hydrogen bond acidity and basicity[J]. The Journal of Organic Chemistry, 2004, 69(14):4677-4685 Abraham M H, Zhao Y H. Characterisation of the water/o-nitrophenyl octyl ether system in terms of the partition of nonelectrolytes and of ions[J]. Physical Chemistry Chemical Physics, 2005, 7(12):2418-2422 Abraham M H, Acree W E. Equations for the transfer of neutral molecules and ionic species from water to organic phases[J]. The Journal of Organic Chemistry, 2010, 75(4):1006-1015 Abraham M H, Acree W E. The transfer of neutral molecules, ions and ionic species from water to wet octanol[J]. Physical Chemistry Chemical Physics, 2010, 12(40):13182 Zhao Y F, Lin S, Choi J W, et al. Prediction of adsorption properties for ionic and neutral pharmaceuticals and pharmaceutical intermediates on activated charcoal from aqueous solution via LFER model[J]. Chemical Engineering Journal, 2019, 362:199-206 Yu C L, Devlin J F, Bi E P. Bonding of monocarboxylic acids, monophenols and nonpolar compounds onto goethite[J]. Chemosphere, 2019, 214:158-167 Enoch S J. The Use of Quantum Mechanics Derived Descriptors in Computational Toxicology[M]//Challenges and Advances in Computational Chemistry and Physics. Dordrecht:Springer Netherlands, 2009:13-28 Zhang H B. A QSAR study of the brain/blood partition coefficients on the basis of pKa values[J]. QSAR & Combinatorial Science, 2006, 25(1):15-24 Ding F, Yang X H, Chen G S, et al. Development of bovine serum albumin-water partition coefficients predictive models for ionogenic organic chemicals based on chemical form adjusted descriptors[J]. Ecotoxicology and Environmental Safety, 2017, 144:131-137 Yang X H, Ou W, Xi Y, et al. Emerging polar phenolic disinfection byproducts are high-affinity human transthyretin disruptors:An in vitro and in silico study[J]. Environmental Science & Technology, 2019, 53(12):7019-7028 Xi Y, Yang X H, Zhang H Y, et al. Binding interactions of halo-benzoic acids, halo-benzenesulfonic acids and halo-phenylboronic acids with human transthyretin[J]. Chemosphere, 2020, 242:125135 Yang X H, Ou W, Zhao S S, et al. Rapid screening of human transthyretin disruptors through a tiered in silico approach[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(16):5661-5672 Yang X H, Ou W, Zhao S S, et al. Human transthyretin binding affinity of halogenated thiophenols and halogenated phenols:An in vitro and in silico study[J]. Chemosphere, 2021, 280:130627 Mamy L, Patureau D, Barriuso E, et al. Prediction of the fate of organic compounds in the environment from their molecular properties:A review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(12):1277-1377 Bittermann K, Spycher S, Endo S, et al. Prediction of phospholipid-water partition coefficients of ionic organic chemicals using the mechanistic model COSMOmic[J]. The Journal of Physical Chemistry B, 2014, 118(51):14833-14842 -

计量
- 文章访问数: 4336
- HTML全文浏览数: 4336
- PDF下载数: 116
- 施引文献: 0