抗生素的胁迫与抗生素抗性基因产生与传播关系的研究

卢文强, 孙昊宇, 王雅娟, 林志芬, 张饮江. 抗生素的胁迫与抗生素抗性基因产生与传播关系的研究[J]. 生态毒理学报, 2020, 15(4): 129-138. doi: 10.7524/AJE.1673-5897.20200205002
引用本文: 卢文强, 孙昊宇, 王雅娟, 林志芬, 张饮江. 抗生素的胁迫与抗生素抗性基因产生与传播关系的研究[J]. 生态毒理学报, 2020, 15(4): 129-138. doi: 10.7524/AJE.1673-5897.20200205002
Lu Wenqiang, Sun Haoyu, Wang Yajuan, Lin Zhifen, Zhang Yinjiang. The Relationship of Antibiotic Stress with Emergence and Dissemination of Antibiotic Resistance Genes[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 129-138. doi: 10.7524/AJE.1673-5897.20200205002
Citation: Lu Wenqiang, Sun Haoyu, Wang Yajuan, Lin Zhifen, Zhang Yinjiang. The Relationship of Antibiotic Stress with Emergence and Dissemination of Antibiotic Resistance Genes[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 129-138. doi: 10.7524/AJE.1673-5897.20200205002

抗生素的胁迫与抗生素抗性基因产生与传播关系的研究

    作者简介: 卢文强(1993-),男,硕士研究生,研究方向为微生物毒理学,E-mail:825089796@qq.com
    通讯作者: 张饮江, E-mail: yjzhang@shou.edu.cn
  • 基金项目:

    同济大学污染控制与资源化研究国家重点实验室自主研究(重点)项目(PCRRK16007);上海市科学技术委员会科研计划课题(17DZ1200103,14DZ2261100);环境化学与生态毒理学国家重点实验室开放基金课题(KF2016-11);111工程资助项目;博士后创新人才支持计划资助项目(BX20190247);中国博士后科学基金资助项目(2019M661624)

  • 中图分类号: X171.5

The Relationship of Antibiotic Stress with Emergence and Dissemination of Antibiotic Resistance Genes

    Corresponding author: Zhang Yinjiang, yjzhang@shou.edu.cn
  • Fund Project:
  • 摘要: 抗生素的环境残留和抗生素抗性基因(antibiotic resistance genes,ARGs)污染日益增加,对全球公共卫生构成重大威胁。目前,关于环境中抗生素与ARGs产生与传播的关系的研究较多,但结果却不尽相同。为了确定抗生素的胁迫与ARGs产生与传播的关系,用磺胺类抗生素(SAs)对大肠杆菌(Escherichia coli,E.coli)毒性作用表征SAs的胁迫作用,用突变和接合转移表征ARGs的产生与传播,测定了SAs对大肠杆菌的毒性、突变频率和结合转移频率的影响,根据剂量-效应曲线,计算了毒性参数(无观察效应浓度(NOEC)、抑制率为50%的化合物浓度(EC50)、抑制率为80%的化合物浓度(EC80)),突变效应参数(促进率为1%时最低可观测突变促进效应浓度(MC0-1)、促进率为50%时突变促进效应浓度(MC50)、促进率最大时突变促进效应浓度(MCmax))和接合转移效应参数(促进率为1%时最低可观测接合转移促进效应浓度(RC0-1)、促进率最大时接合转移促进效应浓度(RCmax)和促进率为1%时最高可观测接合转移促进效应浓度(RC0-2)),利用线性回归分析的方法探究SAs的胁迫与大肠杆菌突变频率和结合转移频率之间的关系,并分析其可能的机制。结果表明,磺胺的高胁迫作用导致核苷酸碱基的大量减少,在DNA复制与转录时,碱基对错配的概率大大增加,从而开始促进突变频率。SAs的低胁迫作用可能引起大肠杆菌的SOS反应,SOS反应可以上调质粒编码的基因以及控制细胞膜的通透性基因,从而提高其接合转移频率。此外,真实环境中存在许多其他的因素也会影响ARGs的产生和传播,据此,本文建议在探索真实环境中ARGs的产生和传播时,应考虑真实环境中其他影响因素和抗生素胁迫的综合作用。上述研究为探索抗生素胁迫对ARGs产生与传播的影响提供了新的思路。
  • 加载中
  • Managaki S, Murata A, Takada H, et al. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters:Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta[J]. Environmental Science & Technology, 2007, 41(23):8004-8010
    Jiang L, Hu X, Yin D, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828
    Qin Y, Wen Q, Ma Y, et al. Antibiotics pollution in Gonghu Bay in the period of water diversion from Yangtze River to Taihu Lake[J]. Environmental Earth Sciences, 2018, 77(11):419
    Li Y, Wu X, Mo C, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta Area, Southern China[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13):7268-7276
    Hartmann E M, Hickey R, Hsu T, et al. Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome[J]. Environmental Science & Technology, 2016, 50(18):9807-9815
    Zhang Q, Ying G, Pan C, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
    Wright G D. Antibiotic resistance in the environment:A link to the clinic?[J]. Current Opinion In Microbiology, 2010, 13(5):589-594
    Tripathi V, Tripathi P. Antibiotic Resistance Genes:An Emerging Environmental Pollutant[M]. Kesari K K. Environmental Science and Engineering. Springer, 2017:183-201
    Li S, Shi W, Liu W, et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016)[J]. Science of the Total Environment, 2018, 615:906-917
    Ghosh S, Lapara T M. The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria[J]. The ISME Journal, 2007, 1(3):191-203
    Zhao R, Feng J, Liu J, et al. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics[J]. Water Research, 2019, 151:388-402
    Zhang Q, Jia A, Wan Y, et al. Occurrences of three classes of antibiotics in a natural river basin:Association with antibiotic-resistant Escherichia coli[J]. Environmental Science & Technology, 2014, 48(24):14317-14325
    Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Research, 2015, 69:234-242
    Hurst J J, Oliver J P, Schueler J, et al. Trends in antimicrobial resistance genes in manure blend pits and long-term storage across dairy farms with comparisons to antimicrobial usage and residual concentrations[J]. Environmental Science & Technology, 2019, 53(5):2405-2415
    Jia J, Guan Y, Cheng M, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China[J]. Science of the Total Environment, 2018, 642:1136-1144
    Martinez J L, Baquero F. Mutation frequencies and antibiotic resistance[J]. Antimicrobial Agents and Chemotherapy, 2000, 44(7):1771-1777
    Davison J. Genetic exchange between bacteria in the environment[J]. Plasmid, 1999, 42(2):73-91
    谢志雄, 沈萍. 细菌遗传转化与水平基因转移[J]. 中南民族大学学报:自然科学版, 2003(4):1-5 Xie Z X, Shen P. Bacterial genetic transformation and horizontal gene transfer[J]. Journal of Central South University for Nationalities:Natural Science, 2003

    (4):1-5(in Chinese)

    Solomon J M, Grossman A D. Who's competent and when:Regulation of natural genetic competence in bacteria[J]. Trends in Genetics, 1996, 12(4):150-155
    黄锦岭. 水平基因转移及其发生机制[J]. 科学通报, 2017, 62(12):1221-1225

    Huang J L. Horizontal gene transfer and its mechanism[J]. Chinese Science Bulletin, 2017, 62(12):1221-1225(in Chinese)

    Lerminiaux N A, Cameron A D S. Horizontal transfer of antibiotic resistance genes in clinical environments[J]. Canadian Journal of Microbiology, 2019, 65(1):34-44
    Zhou L, Ying G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China[J]. Science of the Total Environment, 2013, 444:183-195
    Hall B M, Ma C, Liang P, et al. Fluctuation analysis calculator:A web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis[J]. Bioinformatics, 2009, 25(12):1564-1565
    Seydel J K. Sulfonamides, structure-activity relationship, and mode of action. Structural problems of the antibacterial action of 4-aminobenzoic acid (PABA) antagonists[J]. Journal of Pharmaceutical Sciences, 1968, 57(9):1455-1478
    Brown G M. The biosynthesis of folic acid. Ⅱ. Inhibition by sulfonamides[J]. The Journal of Biological Chemistry, 1962, 237(6):536-540
    Skold O. Sulfonamide resistance:Mechanisms and trends[J]. Drug Resistance Updates, 2000, 3(3):155-160
    Wang T, Liu Y, Wang D, et al. The joint effects of sulfonamides and quorum sensing inhibitors on Vibrio fischeri:Differences between the acute and chronic mixed toxicity mechanisms[J]. Journal of Hazardous Materials, 2016, 310:56-67
    Vedantam G, Guay G G, Austria N E, et al. Characterization of mutations contributing to sulfathiazole resistance in Escherichia coli[J]. Antimicrobial Agents and Chemotherapy, 1998, 42(1):88-93
    Sultan I, Rahman S, Jan A T, et al. Antibiotics, resistome and resistance mechanisms:A bacterial perspective[J]. Frontiers in Microbiology, 2018, 9:2066
    Andersson D I, Hughes D. Microbiological effects of sublethal levels of antibiotics[J]. Nature Reviews Microbiology, 2014, 12(7):465-478
    Thomas C M, Nielsen K M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria[J]. Nature Reviews Microbiology, 2005, 3(9):711-721
    Sorensen S J, Bailey M, Hansen L H, et al. Studying plasmid horizontal transfer in situ:A critical review[J]. Nature Reviews Microbiology, 2005, 3(9):700-710
    Wang Y, Lu J, Mao L, et al. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera[J]. The ISME Journal, 2019, 13(2):509-522
    Zhang Y, Gu A Z, Cen T, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237:74-82
    Bae Y S, Oh H, Rhee S G, et al. Regulation of reactive oxygen species generation in cell signaling[J]. Molecules and Cells, 2011, 32(6):491-509
    Schieber M, Chandel N S. ROS function in redox signaling and oxidative stress[J]. Current Biology, 2014, 24(10):R453-R462
    Xie Y, Wei Y, Shen Y, et al. TADB 2.0:An updated database of bacterial type Ⅱ toxin-antitoxin loci[J]. Nucleic Acids Research, 2018, 46(D1):D749-D753
    Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure[J]. Science, 2016, 354(6318):f4268
    Maslowska K H, Makiela Dzbenska K, Fijalkowska I J. The SOS system:A complex and tightly regulated response to DNA damage[J]. Environmental and Molecular Mutagenesis, 2019, 60(4):368-384
    Kim S, Yun Z, Ha U, et al. Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations[J]. Science of the Total Environment, 2014, 468-469:813-820
    Hu J, Shi J, Chang H, et al. Phenotyping and genotyping of antihiotic-resistant Escherichia coli isolated from a natural river basin[J]. Environmental Science & Technology, 2008, 42(9):3415-3420
  • 加载中
计量
  • 文章访问数:  4324
  • HTML全文浏览数:  4324
  • PDF下载数:  133
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-05

抗生素的胁迫与抗生素抗性基因产生与传播关系的研究

    通讯作者: 张饮江, E-mail: yjzhang@shou.edu.cn
    作者简介: 卢文强(1993-),男,硕士研究生,研究方向为微生物毒理学,E-mail:825089796@qq.com
  • 1. 上海海洋大学海洋生态与环境学院, 上海 201306;
  • 2. 同济大学环境科学与工程学院, 污染控制与资源化研究国家重点实验室, 上海 200092
基金项目:

同济大学污染控制与资源化研究国家重点实验室自主研究(重点)项目(PCRRK16007);上海市科学技术委员会科研计划课题(17DZ1200103,14DZ2261100);环境化学与生态毒理学国家重点实验室开放基金课题(KF2016-11);111工程资助项目;博士后创新人才支持计划资助项目(BX20190247);中国博士后科学基金资助项目(2019M661624)

摘要: 抗生素的环境残留和抗生素抗性基因(antibiotic resistance genes,ARGs)污染日益增加,对全球公共卫生构成重大威胁。目前,关于环境中抗生素与ARGs产生与传播的关系的研究较多,但结果却不尽相同。为了确定抗生素的胁迫与ARGs产生与传播的关系,用磺胺类抗生素(SAs)对大肠杆菌(Escherichia coli,E.coli)毒性作用表征SAs的胁迫作用,用突变和接合转移表征ARGs的产生与传播,测定了SAs对大肠杆菌的毒性、突变频率和结合转移频率的影响,根据剂量-效应曲线,计算了毒性参数(无观察效应浓度(NOEC)、抑制率为50%的化合物浓度(EC50)、抑制率为80%的化合物浓度(EC80)),突变效应参数(促进率为1%时最低可观测突变促进效应浓度(MC0-1)、促进率为50%时突变促进效应浓度(MC50)、促进率最大时突变促进效应浓度(MCmax))和接合转移效应参数(促进率为1%时最低可观测接合转移促进效应浓度(RC0-1)、促进率最大时接合转移促进效应浓度(RCmax)和促进率为1%时最高可观测接合转移促进效应浓度(RC0-2)),利用线性回归分析的方法探究SAs的胁迫与大肠杆菌突变频率和结合转移频率之间的关系,并分析其可能的机制。结果表明,磺胺的高胁迫作用导致核苷酸碱基的大量减少,在DNA复制与转录时,碱基对错配的概率大大增加,从而开始促进突变频率。SAs的低胁迫作用可能引起大肠杆菌的SOS反应,SOS反应可以上调质粒编码的基因以及控制细胞膜的通透性基因,从而提高其接合转移频率。此外,真实环境中存在许多其他的因素也会影响ARGs的产生和传播,据此,本文建议在探索真实环境中ARGs的产生和传播时,应考虑真实环境中其他影响因素和抗生素胁迫的综合作用。上述研究为探索抗生素胁迫对ARGs产生与传播的影响提供了新的思路。

English Abstract

参考文献 (41)

目录

/

返回文章
返回