环境内分泌干扰物暴露致心肌线粒体损伤的研究进展

唐兰, 俞捷, 许洁. 环境内分泌干扰物暴露致心肌线粒体损伤的研究进展[J]. 生态毒理学报, 2020, 15(4): 123-128. doi: 10.7524/AJE.1673-5897.20190903002
引用本文: 唐兰, 俞捷, 许洁. 环境内分泌干扰物暴露致心肌线粒体损伤的研究进展[J]. 生态毒理学报, 2020, 15(4): 123-128. doi: 10.7524/AJE.1673-5897.20190903002
Tang Lan, Yu Jie, Xu Jie. The Effects of Environmental Endocrine Disruptors on Myocardial Mitochondrial: A Review[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 123-128. doi: 10.7524/AJE.1673-5897.20190903002
Citation: Tang Lan, Yu Jie, Xu Jie. The Effects of Environmental Endocrine Disruptors on Myocardial Mitochondrial: A Review[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 123-128. doi: 10.7524/AJE.1673-5897.20190903002

环境内分泌干扰物暴露致心肌线粒体损伤的研究进展

    作者简介: 唐兰(1995-),女,硕士,研究方向为环境与健康,E-mail:1247822009@qq.com
    通讯作者: 许洁, E-mail: 649904039@qq.com
  • 基金项目:

    国家自然科学基金资助项目(81760580);贵州省科技厅基金重点项目(黔科合基础2018-1429,2019-1466);贵州省高层次创新型"百层次"人才项目(黔科合平台人才[2020]6014);普通高等学校科技拔尖人才支持计划项目(黔教合KY2018054);遵义市"15851"人才项目经费(2019-E262)

  • 中图分类号: X171.5

The Effects of Environmental Endocrine Disruptors on Myocardial Mitochondrial: A Review

    Corresponding author: Xu Jie, 649904039@qq.com
  • Fund Project:
  • 摘要: 心脏疾病(冠心病、心肌炎及心肌梗死等)发病率持续增高,病因不明。线粒体是心脏进行生命活动时所需能量的供给场所,当受损时会引发心脏疾病。研究表明,环境内分泌干扰物(environmental endocrine disruptors,EEDs)暴露可导致心肌线粒体损伤,其机制包括呼吸链受损、呼吸酶活性降低、线粒体膜损害、Ca2+稳态紊乱、氧化应激增加、抗氧化能力降低、线粒体能量代谢调控基因表达改变和线粒体融合与分裂改变等。本文综述了几种有代表性的EEDs (双酚A、壬基酚、邻苯二甲酸二(2-乙基)己酯、磷化铝、马拉硫磷、镉和汞)及EEDs混合物对心肌线粒体的损伤及其机制。以期为线粒体作为治疗心脏疾病的靶点提供理论依据。
  • 加载中
  • 马丽媛, 吴亚哲, 王文, 等. 《中国心血管病报告2017》要点解读[J]. 中国心血管杂志, 2018, 23(1):3-6

    Ma L Y, Wu Y Z, Wang W, et al. Key points of China Cardiovascular Disease Report 2017[J]. Chinese Journal of Cardiovascular Sciences, 2018, 23(1):3-6(in Chinese)

    Kabir E R, Rahman M S, Rahman I. A review on endocrine disruptors and their possible impacts on human health[J]. Environmental Toxicology and Pharmacology, 2015, 40(1):241-258
    Amara I, Timoumi R, Annabi E, et al. Di (2-ethylhexyl) phthalate induces cardiac disorders in BALB/c mice[J]. Environmental Science and Pollution Research, 2019, 26(8):7540-7549
    Su T, Hwang U, Sun C, et al. Urinary phthalate metabolites, coronary heart disease, and atherothrombotic markers[J]. Ecotoxicology and Environmental Safety, 2019, 173:37-44
    Genchi G, Sinicropi M, Carocci A, et al. Mercury exposure and heart diseases[J]. International Journal of Environmental Research and Public Health, 2017, 14(1):74
    Dominic A, Ramezani A, Anker S, et al. Mitochondrial cytopathies and cardiovascular disease[J]. Heart, 2014, 100(8):611-618
    Mohsin A, Chen Q, Quan N H, et al. Mitochondrial complex I inhibition by metformin limits reperfusion injury[J]. Journal of Pharmacology and Experimental Therapeutics, 2019, 369(2):282-290
    Boengler K, Lochnit G, Schulz R. Mitochondria "THE" target of myocardial conditioning[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2018, 315(5):H1215-H1231
    Brown D A, Perry J B, Allen M E, et al. Expert consensus document:Mitochondrial function as a therapeutic target in heart failure[J]. Nature Reviews Cardiology, 2017, 14(4):238-250
    Posnack N G, Jaimes R, Asfour H, et al. Bisphenol A exposure and cardiac electrical conduction in excised rat hearts[J]. Environmental Health Perspectives, 2014, 122(4):384-390
    姜颖. 双酚A暴露对大鼠的心脏毒性及其表观遗传学机制的研究[D]. 武汉:华中科技大学, 2015:84-89 Jiang Y. Cardiac effects of bisphenol A exposure in rats and its epigenetic mechanism[D]. Wuhan:Huazhong University of Science and Technology, 2015:84

    -89(in Chinese)

    Patel B B, Kasneci A, Bolt A M, et al. Chronic exposure to bisphenol A reduces successful cardiac remodeling after an experimental myocardial infarction in male C57bl/6n mice[J]. Toxicological Sciences, 2015, 146(1):101-115
    Garcia M, Guéant-Rodriguez R, Pooya S, et al. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1[J]. The Journal of Pathology, 2011, 225(3):324-335
    Jiang Y, Xia W, Yang J, et al. BPA-induced DNA hypermethylation of the master mitochondrial gene PGC-1α contributes to cardiomyopathy in male rats[J]. Toxicology, 2015, 329:21-31
    Patel B, Raad M, Sebag I A, et al. Lifelong exposure to bisphenol A alters cardiac structure/function, protein expression, and DNA methylation in adult mice[J]. Toxicological Sciences, 2013, 133(1):174-185
    Yue R C, Xia X W, Jiang J H, et al. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats:Cardioprotective role of lycopene[J]. Journal of Cellular Physiology, 2015, 230(9):2128-2141
    Aboul Ezz H S, Khadrawy Y A, Mourad I M. The effect of bisphenol A on some oxidative stress parameters and acetylcholinesterase activity in the heart of male albino rats[J]. Cytotechnology, 2015, 67(1):145-155
    Bround M J, Wambolt R, Luciani D S, et al. Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo[J]. Journal of Biological Chemistry, 2013, 288(26):18975-18986
    Pace C, Dagda R, Angermann J. Antioxidants protect against arsenic induced mitochondrial cardio-toxicity[J]. Toxics, 2017, 5(4):38-41
    Ramadan M, Sherman M, Jaimes R, et al. Disruption of neonatal cardiomyocyte physiology following exposure to bisphenol-A[J]. Scientific Reports, 2018, 8(1):7356
    Gao X Q, Liang Q, Chen Y M, et al. Molecular mechanisms underlying the rapid arrhythmogenic action of bisphenol A in female rat hearts[J]. Endocrinology, 2013, 154(12):4607-4617
    Yan S J, Chen Y M, Dong M, et al. Bisphenol A and 17β-estradiol promote arrhythmia in the female heart via alteration of calcium handling[J]. PLOS ONE, 2011, 6(9):e25455
    Cook S J, Stuart K, Gilley R, et al. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling[J]. FEBS Journal, 2017, 284(24):4177-4195
    Hu Y Y, Zhang L, Wu X X, et al. Bisphenol A, an environmental estrogen-like toxic chemical, induces cardiac fibrosis by activating the ERK1/2 pathway[J]. Toxicology Letters, 2016, 250:1-9
    Wang Y, Hu H Y, Zhao M M, et al. Nonylphenol disrupts the cardio-protective effects of 17β-estradiol on ischemia/reperfusion injury in isolated hearts of guinea pig[J]. Journal of Toxicological Sciences, 2013, 38(5):731-740
    Gao Q H, Liu S Y, Guo F, et al. Nonylphenol affects myocardial contractility and L-type Ca2+ channel currents in a non-monotonic manner via G protein-coupled receptor 30[J]. Toxicology, 2015, 334:122-129
    Li X J, Zhou L T, Ni Y P, et al. Nonylphenol induces pancreatic damage in rats through mitochondrial dysfunction and oxidative stress[J]. Toxicology Research, 2017, 6(3):353-360
    Perrotta I, Tripepi S. Ultrastructural alterations in the ventricular myocardium of the adult Italian newt (Lissotriton italicus) following exposure to nonylphenol ethoxylate[J]. Micron, 2012, 43(2):183-191
    Posnack N G, Swift L M, Kay M W, et al. Phthalate exposure changes the metabolic profile of cardiac muscle cells[J]. Environmental Health Perspectives, 2012, 120(9):1243-1251
    Posnack N G, Lee N H, Brown R, et al. Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity[J]. Toxicology, 2011, 279(1):54-64
    Asghari M H, Moloudizargari M, Baeeri M, et al. On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity[J]. Archives of Toxicology, 2017, 91(9):3109-3120
    Aminjan H H, Abtahi S R, Hazrati E, et al. Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation[J]. Life Sciences, 2019, 232:116607
    Akbel E, Arslan-Acaroz D, Demirel H H, et al. The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats:The protective role of resveratrol[J]. Toxicology Research, 2018, 7(3):503-512
    Turkmen R, Birdane Y O, Demirel H H, et al. Protective effects of resveratrol on biomarkers of oxidative stress, biochemical and histopathological changes induced by sub-chronic oral glyphosate-based herbicide in rats[J]. Toxicology Research, 2019, 8(2):238-245
    Mohammadi H, Karimi G, Rezayat S M, et al. Benefit of nanocarrier of magnetic magnesium in rat malathion-induced toxicity and cardiac failure using non-invasive monitoring of electrocardiogram and blood pressure[J]. Toxicology and Industrial Health, 2011, 27(5):417-429
    Shemarova I V, Korotkov S M, Nesterov V P. Influence of oxidative processes in mitochondria on contractility of the frog Rana temporaria heart muscle. Effects of cadmium[J]. Journal of Evolutionary Biochemistry and Physiology, 2011, 47(4):306-310
    Oyinloye B E, Ajiboye B O, Adeleke Ojo O, et al. Cardioprotective and antioxidant influence of aqueous extracts from sesamum indicum seeds on oxidative stress induced by cadmium in Wistar rats[J]. Pharmacognosy Magazine, 2016, 12(46):170-174
    Lei W W, Wang L, Liu D M, et al. Histopathological and biochemical alternations of the heart induced by acute cadmium exposure in the freshwater crab Sinopotamon yangtsekiense[J]. Chemosphere, 2011, 84(5):689-694
    Huang Q Y, Fang C W, Huang H Q. Alteration of heart tissue protein profiles in acute cadmium-treated scallops Patinopecten yessoensis[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(1):90-98
    Houston M C. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke[J]. Journal of Clinical Hypertension, 2011, 13(8):621-627
    Azevedo B F, Furieri L B, Peçanha F M, et al. Toxic effects of mercury on the cardiovascular and central nervous systems[J]. BioMed Research International, 2012, 2012:949048
    Baiyun R Q, Li S Y, Liu B Y, et al. Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury[J]. Ecotoxicology and Environmental Safety, 2018, 161:655-661
    秦国华, 武美琼, 桑楠. SO2和BaP复合暴露诱导小鼠心脏线粒体损伤的分子机制初探[J]. 环境科学学报, 2015, 35(8):2620-2625

    Qin G H, Wu M Q, Sang N. Molecular mechanism of co-exposure of sulfur dioxide and benzo(a) pyrene on mouse myocardial cell mitochondria damage[J]. Acta Scientiae Circumstantiae, 2015, 35(8):2620-2625(in Chinese)

    李振青. 关于PM2.5监测与烟花爆竹燃放的研究[J]. 中国化工贸易, 2013, 5(5):268
    寇晓晶. PM2.5暴露对大鼠心脏线粒体损伤效应及分子机制研究[D]. 太原:山西大学, 2015:20-26 Kou X J. Effects of PM2.5

    on mitochondrial damage in hearts of rats and their molecular mechanisms[D]. Taiyuan:Shanxi University, 2015:20-26(in Chinese)

  • 加载中
计量
  • 文章访问数:  2724
  • HTML全文浏览数:  2724
  • PDF下载数:  116
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-03
唐兰, 俞捷, 许洁. 环境内分泌干扰物暴露致心肌线粒体损伤的研究进展[J]. 生态毒理学报, 2020, 15(4): 123-128. doi: 10.7524/AJE.1673-5897.20190903002
引用本文: 唐兰, 俞捷, 许洁. 环境内分泌干扰物暴露致心肌线粒体损伤的研究进展[J]. 生态毒理学报, 2020, 15(4): 123-128. doi: 10.7524/AJE.1673-5897.20190903002
Tang Lan, Yu Jie, Xu Jie. The Effects of Environmental Endocrine Disruptors on Myocardial Mitochondrial: A Review[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 123-128. doi: 10.7524/AJE.1673-5897.20190903002
Citation: Tang Lan, Yu Jie, Xu Jie. The Effects of Environmental Endocrine Disruptors on Myocardial Mitochondrial: A Review[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 123-128. doi: 10.7524/AJE.1673-5897.20190903002

环境内分泌干扰物暴露致心肌线粒体损伤的研究进展

    通讯作者: 许洁, E-mail: 649904039@qq.com
    作者简介: 唐兰(1995-),女,硕士,研究方向为环境与健康,E-mail:1247822009@qq.com
  • 遵义医科大学公共卫生学院, 遵义 563000
基金项目:

国家自然科学基金资助项目(81760580);贵州省科技厅基金重点项目(黔科合基础2018-1429,2019-1466);贵州省高层次创新型"百层次"人才项目(黔科合平台人才[2020]6014);普通高等学校科技拔尖人才支持计划项目(黔教合KY2018054);遵义市"15851"人才项目经费(2019-E262)

摘要: 心脏疾病(冠心病、心肌炎及心肌梗死等)发病率持续增高,病因不明。线粒体是心脏进行生命活动时所需能量的供给场所,当受损时会引发心脏疾病。研究表明,环境内分泌干扰物(environmental endocrine disruptors,EEDs)暴露可导致心肌线粒体损伤,其机制包括呼吸链受损、呼吸酶活性降低、线粒体膜损害、Ca2+稳态紊乱、氧化应激增加、抗氧化能力降低、线粒体能量代谢调控基因表达改变和线粒体融合与分裂改变等。本文综述了几种有代表性的EEDs (双酚A、壬基酚、邻苯二甲酸二(2-乙基)己酯、磷化铝、马拉硫磷、镉和汞)及EEDs混合物对心肌线粒体的损伤及其机制。以期为线粒体作为治疗心脏疾病的靶点提供理论依据。

English Abstract

参考文献 (45)

返回顶部

目录

/

返回文章
返回