利用室内微宇宙系统研究三唑酮对淡水浮游动物群落的影响
Study on the Effect of Triadimefon on Freshwater Zooplankton Community Using Indoor Microcosm System
-
摘要: 三唑酮广泛用于水稻田,常在水环境中残留。为研究三唑酮在环境暴露下的生态风险,通过室内标准微宇宙试验系统检验三唑酮对浮游动物的效应。结果表明,在试验初期,三唑酮对部分浮游动物种群表现出抑制作用:对枝角类生物有明显的抑制作用,对桡足类则展现出轻微的抑制作用。8种生物及桡足类无节幼虫对三唑酮的敏感性依次为:盘肠溞>平突船卵溞>隆线溞>萼花臂尾轮虫>低额溞≥锯缘真剑水蚤≥无节幼虫≥单趾轮虫≥中华薄壳介。在整个试验周期内,三唑酮对浮游动物群落的最大无作用剂量(NOECcommunity)>2 078.88 μg·L-1。在水稻种植季节,三唑酮在沟渠水最大残留浓度为12.00 μg·L-1,低于本研究中三唑酮的NOECcommunity。由此可以推测,三唑酮对浮游动物群落的风险很小。Abstract: Triazolone is widely used in rice fields and it often remains in the aquatic environment. In order to study the ecological risks caused by triadimefon exposure, the effect of triadimefon on zooplankton was examined by an indoor standard microcosm test system. The results indicated that triadimefon inhibited several zooplankton populations at the beginning of the experiment, in which Cladocerans was inhibited significantly, and Copepods was slightly inhibited. The sensitive order of eight organisms and larvae of Copepods to triadimefon was as follows: Chydorus sp.>Scapholeberis mucronata>Daphnia carinata>Brachionus calyciflorus>Simocephalus vetulus≥Eucyclops serrulatus≥naupiar larva≥Monostyla sp.≥Dolerocypris sinensis. The no observed effect concentration (NOECcommunity) imposed by traidmefon on the zooplankton community was higher than 2 078.88 μg·L-1. During the rice planting period, the maximum residual concentration of triadimefon was 12.00 μg·L-1 in the water, which is lower than the NOECcommunity of triadimefon in this study. It could be speculated that triadimefon exhibited low risk to zooplankton community.
-
Key words:
- triadimefon /
- microcosm /
- aquatic zooplankton /
- community effect
-
张一宾, 张怿. 世界农药新进展[M]. 北京:化学工业出版社, 2007:56 Zhang Y B, Zhang Y. New Progress of Pesticides in World[M]. Beijing:Chemical Industry Publishing House, 2007:56(in Chinese) 中华人民共和国国家环境保护总局. GB 21523-2008杂环类农药工业水污染排放标准[S]. 北京:中国标准出版社, 2008:5 付岩. 典型农药在稻田及周围水环境中对微生物群落的影响研究[D]. 杭州:浙江大学, 2015:27-28 Fu Y. Effects of typical pesticides on microbial community diversity in paddy ecosystems[D]. Hangzhou:Zhejiang University, 2015:27 -28(in Chinese)
Vincelli P. Simulations of fungicide runoff following applications for turfgrass disease control[J]. Plant Disease, 2004, 88(4):391-396 游明华. 天然水中9种三唑类农药的检测方法及其非生物降解研究[D]. 厦门:厦门大学, 2008:39 You M H. Determination and abiotic degradation of nine trizole pesticides in natrual aquatic environments[D]. Xiamen:Xiamen University, 2008:39(in Chinese) 刘娜, 金小伟, 薛荔栋, 等. 太湖流域药物和个人护理品污染调查与生态风险评估[J]. 中国环境科学, 2017, 37(9):317-324 Liu N, Jin X W, Xue L D, et al. Concentrations distribution and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake[J]. China Environmental Science, 2017, 37(9):317-324(in Chinese)
Francois I, Cammue B, Borgers M, et al. Azoles:Mode of antifungal action and resistance development. Effect of miconazole on endogenous reactive oxygen species production in Candida albicans[J]. Anti-Infective Agents in Medicinal Chemistry, 2006, 5(1):3-13 郭晶, 宋文华, 丁峰, 等. 三唑类杀菌剂对大型溞急性毒性研究[J]. 南开大学学报:自然科学版, 2009, 42(3):76-80 Guo J, Song W H, Ding F, et al. Acute toxicity study of triazole fungicides exposure to Daphnia magna[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2009, 42(3):76-80(in Chinese)
刘少颖. 三唑酮对斑马鱼的胚胎发育和内分泌-生殖毒性[D]. 杭州:浙江大学, 2011:36 Liu S Y. Embryonic developmental and endocrine-reproductive toxicity of triadimefon on zebrafish[D]. Hangzhou:Zhejiang University, 2011:36(in Chinese) Lenkowski J R, Sanchez-Bravo G, McLaughlin K A, et al. Low concentrations of atrazine, glyphosate, 2,4-dichlorophenoxyacetic acid, and triadimefon exposures have diverse effects on Xenopus laevis organ morphogenesis[J]. Journal of Environmental Sciences, 2010, 22(9):1305-1308 Kenneke J F, Mazur C S, Kellock K A, et al. Mechanistic approach to understanding the toxicity of the azole fungicide triadimefon to a nontarget aquatic insect and implications for exposure assessment[J]. Environmental Science & Technology, 2009, 43(14):5507-5513 Hasslod E, Backhaus T. Chronic toxicity of five structurally diverse demethylase-inhibiting fungicides to the crustacean Daphnia magna:A comparative assessment[J]. Environmental Toxicology & Chemistry, 2010, 28(6):1218-1226 胡方华, 宋文华, 丁峰, 等. 三唑酮对大型溞21天慢性毒性效应[J]. 生态毒理学报, 2012, 7(2):171-176 Hu F H, Song W H, Ding F, et al. 21-d chronic toxicity of triadimefon to Daphnia magna[J]. Asian Journal of Ecotoxicology, 2012, 7(2):171-176(in Chinese)
Cedergreen N, Streibig R J C. Improved empirical models describing hormesis[J]. Environmental Toxicology & Chemistry, 2010, 24(12):3166-3172 Bjergager M B A, Hanson M L, Lissemore L, et al. Synergy in microcosms with environmentally realistic concentrations of prochloraz and esfenvalerate[J]. Aquatic Toxicology, 2011, 101(2):412-422 Van Wijngaarden R P A, Brock T C M, van den Brink P J. Threshold levels for effects of insecticides in freshwater ecosystems:A review[J]. Ecotoxicology, 2005, 14(3):355-380 Rubach M N, Baird D J, van den Brink P J. A new method for ranking mode-specific sensitivity of freshwater arthropods to insecticides and its relationship to biological traits[J]. Environmental Toxicology & Chemistry, 2010, 29(2):476-487 Van den Brink P J, Donk E, Gylstra R, et al. Effects of chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor freshwater microcosms[J]. Chemosphere, 1995, 31(5):3181-3200 Heegaard E, Vandvik V. Climate change affects the outcome of competitive interactions-An application of principal response curves[J]. Oecologia, 2004, 139(3):459-466 Van den Brink P J, Ter Braak C J F. Multivariate analysis of stress in experimental ecosystems by principal response curves and similarity analysis[J]. Aquatic Ecology, 1998, 32(2):163-178 Van den Brink P J, Ter Braak C J F. Principal response curves:Analysis of time-dependent multivariate responses of biological community to stress[J]. Environmental Toxicology & Chemistry, 2010, 18(2):138-148 Van den Brink P J, den Besten P J, de Vaate A, et al. Principal response curves technique for the analysis of multivariate biomonitoring time series[J]. Environmental Monitoring & Assessment, 2009, 152(1):271-281 刘福光, 刘毅华, 赵颖, 等. 毒死蜱对南方稻区水域生态效应的室内微宇宙模拟研究[J]. 农药学学报, 2013, 15(2):198-203 Liu F G, Liu Y H, Zhao Y, et al. Indoor microcosms study on ecological effects of rice paddy applied with chlorpyrifos on zooplankton in south China[J]. Chinese Journal of Pesticide Science, 2013, 15(2):198-203(in Chinese)
Olmo C, Armengol X, Antón-pardo M, et al. The environmental and zooplankton community changes in restored ponds over 4 years[J]. Journal of Plankton Research, 2016, 38(3):490-501 Yin X H, Brock T C M, Barone L E, et al. Exposure and effects of sediment-spiked fludioxonil on macroinvertebrates and zooplankton in outdoor aquatic microcosms[J]. Science of the Total Environment, 2017, 610-611:1222-1238
计量
- 文章访问数: 2538
- HTML全文浏览数: 2538
- PDF下载数: 118
- 施引文献: 0