食蚊鱼P-糖蛋白基因克隆及三氯生对其mRNA表达的影响

宋晓红, 陆爱金, 杜士林, 陈双凤, 陈旺光, 梁延鹏, 黄亮亮, 曾鸿鹄. 食蚊鱼P-糖蛋白基因克隆及三氯生对其mRNA表达的影响[J]. 生态毒理学报, 2020, 15(4): 167-176. doi: 10.7524/AJE.1673-5897.20191111002
引用本文: 宋晓红, 陆爱金, 杜士林, 陈双凤, 陈旺光, 梁延鹏, 黄亮亮, 曾鸿鹄. 食蚊鱼P-糖蛋白基因克隆及三氯生对其mRNA表达的影响[J]. 生态毒理学报, 2020, 15(4): 167-176. doi: 10.7524/AJE.1673-5897.20191111002
Song Xiaohong, Lu Aijin, Du Shilin, Chen Shuangfeng, Chen Wangguang, Liang Yanpeng, Huang Liangliang, Zeng Honghu. Cloning of P-Glycoprotein Gene and Effects of Triclosan on Its mRNA Expression in Mosquitofish (Gambusia affinis)[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 167-176. doi: 10.7524/AJE.1673-5897.20191111002
Citation: Song Xiaohong, Lu Aijin, Du Shilin, Chen Shuangfeng, Chen Wangguang, Liang Yanpeng, Huang Liangliang, Zeng Honghu. Cloning of P-Glycoprotein Gene and Effects of Triclosan on Its mRNA Expression in Mosquitofish (Gambusia affinis)[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 167-176. doi: 10.7524/AJE.1673-5897.20191111002

食蚊鱼P-糖蛋白基因克隆及三氯生对其mRNA表达的影响

    作者简介: 宋晓红(1990-),女,硕士,实验师,研究方向为水生毒理学,E-mail:sxh215@163.com
    通讯作者: 曾鸿鹄, E-mail: zenghonghu@glut.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(51578171);广西科技计划项目(桂科AD18126018);广西自然科学基金资助项目(2018GXNSFAA281022)

  • 中图分类号: X171.5

Cloning of P-Glycoprotein Gene and Effects of Triclosan on Its mRNA Expression in Mosquitofish (Gambusia affinis)

    Corresponding author: Zeng Honghu, zenghonghu@glut.edu.cn
  • Fund Project:
  • 摘要: 三氯生(TCS)是一种广谱高效抗菌剂,在水环境和生物体内均不同程度检出,对水生生物具有潜在风险。P-糖蛋白(P-gp)是生物体多型异源物质抗性防御系统中重要的"膜解毒蛋白",对水生生物体内的有毒物质和代谢产物具有重要的外排和转运作用。为探究P-gp在鱼类免疫中的作用,克隆了食蚊鱼(Gambusia affinisP-gp基因的cDNA,检测了不同浓度(50、100和150 □g·L-1) TCS暴露12 h、1 d、3 d、5 d、7 d和9 d后,P-gpmRNA相对表达量的变化。实验获得的食蚊鱼P-gpcDNA共5 452 bp,编码1 294个氨基酸,具有ABC转运蛋白家族典型的跨膜结构、功能区域和作用位点,与其他鳉形目的鱼类P-gp氨基酸序列同源性较高。TCS对P-gpmRNA表达的影响呈现倒"U"型的时间-剂量效应,50 □g·L-1和100 □g·L-1 TCS胁迫后P-gp表达量先升高后下降,100 □g·L-1暴露组表达高峰在暴露1 d时,50 □g·L-1 TCS暴露组表达高峰延迟至3 d,而150 □g·L-1暴露组P-gp表达无显著变化。结果表明,P-gp基因参与了TCS胁迫的解毒过程,有助于食蚊鱼抵抗外源污染物的毒性作用。
  • 加载中
  • Zucchi S, Corsi I, Luckenbach T, et al. Identification of five partial ABC genes in the liver of the Antarctic fish Trematomus bernacchii and sensitivity of ABCB1 and ABCC2 to Cd exposure[J]. Environmental Pollution, 2010, 158(8):2746-2756
    Della Torre C, Bocci E, Focardi S E, et al. Differential ABCB and ABCC gene expression and efflux activities in gills and hemocytes of Mytilus galloprovincialis and their involvement in cadmium response[J]. Marine Environmental Research, 2014, 93:56-63
    Pedersen J M, Khan E K, Bergström C A S, et al. Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2)[J]. European Journal of Pharmaceutical Sciences, 2017, 103:70-76
    Szak á cs G, Váradi A, Özvegy-Laczka C, et al. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox)[J]. Drug Discovery Today, 2008, 13(9-10):379-393
    Jeong C B, Kim H S, Kang H M, et al. ATP-binding cassette (ABC) proteins in aquatic invertebrates:Evolutionary significance and application in marine ecotoxicology[J]. Aquatic Toxicology, 2017, 185:29-39
    王芳, 李凯彬, 聂湘平, 等. 剑尾鱼P-糖蛋白基因全长cDNA克隆、分析及组织分布[J]. 水生生物学报, 2013, 37(5):817-823

    Wang F, Li K B, Nie X P, et al. P-glycoprotein of swordtail fish Xiphophorus helleri:cDNA cloning, bioinformatic and tissue-specific expression analysis[J]. Acta Hydrobiologica Sinica, 2013, 37(5):817-823(in Chinese)

    Bard S M, Woodin B R, Stegeman J J. Expression of P-glycoprotein and cytochrome P4501A in intertidal fish (Anoplarchus purpurescens) exposed to environmental contaminants[J]. Aquatic Toxicology, 2002, 60(1-2):17-32
    Jeong C B, Kim D H, Kang H M, et al. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana[J]. Aquatic Toxicology, 2017, 183:144-155
    胡鲲, 程钢, 吕利群, 等. 基于P-糖蛋白基因表达评价尼罗罗非鱼体内恩诺沙星代谢"首过效应"[J]. 中国水产科学, 2013, 20(2):411-418

    Hu K, Cheng G, Lv L Q, et al. Association between permeability glycoprotein expression and enrofloxacin metabolism to evaluate the first-pass effect in Oreochomis niloticus Linn[J]. Journal of Fishery Sciences of China, 2013, 20(2):411-418(in Chinese)

    Marques-Santos L F, Hégaret H, Lima-Santos L, et al. ABCB1 and ABCC1-like transporters in immune system cells from sea urchins Echinometra lucunter and Echinus esculentus and oysters Crassostrea gasar and Crassostrea gigas[J]. Fish & Shellfish Immunology, 2017, 70:195-203
    Valton E, Amblard C, Wawrzyniak I, et al. P-gp expression in brown trout erythrocytes:Evidence of a detoxification mechanism in fish erythrocytes[J]. Scientific Reports, 2013, 3:3422
    Shanmugam G, Ramasamy K, Selvaraj K K, et al. Triclosan in fresh water fish Gibelion catla from the Kaveri River, India, and its consumption risk assessment[J]. Environmental Forensics, 2014, 15(3):207-212
    Escarrone A L V, Caldas S S, Primel E G, et al. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater[J]. Science of the Total Environment, 2016, 560:218-224
    Carmona E, Andreu V, Picó Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin:From waste to drinking water[J]. Science of the Total Environment, 2014, 484:53-63
    Lyndall J, Barber T, Mahaney W, et al. Evaluation of triclosan in Minnesota lakes and rivers:Part Ι-Ecological risk assessment[J]. Ecotoxicology and Environmental Safety, 2017, 142:578-587
    Yao L, Zhao J L, Liu Y S, et al. Personal care products in wild fish in two main Chinese rivers:Bioaccumulation potential and human health risks[J]. Science of the Total Environment, 2018, 621:1093-1102
    Ho J C, Hsiao C D, Kawakami K, et al. Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos[J]. Aquatic Toxicology, 2016, 173:29-35
    Fritsch E B, Connon R E, Werner I, et al. Triclosan impairs swimming behavior and alters expression of excitation-contraction coupling proteins in fathead minnow (Pimephales promela s)[J]. Environmental Science & Technology, 2013, 47(4):2008-2017
    Veldhoen N, Skirrow R C, Osachoff H, et al. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development[J]. Aquatic Toxicology, 2006, 80(3):217-227
    Horie Y, Yamagishi T, Takahashi H, et al. Effects of triclosan on Japanese medaka (Oryzias latipes) during embryo development, early life stage and reproduction[J]. Journal of Applied Toxicology, 2018, 38(4):544-551
    Rautenberg G E, Amé M V, Monferrán M V, et al. A multi-level approach using Gambusia affinis as a bioindicator of environmental pollution in the middle-lower basin of Suquía River[J]. Ecological Indicators, 2015, 48:706-720
    Huang G Y, Liu Y S, Liang Y Q, et al. Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents[J]. Science of the Total Environment, 2016, 563:273-281
    Dang H M, Inagaki Y, Yamauchi Y, et al. Acute exposure to 17α-ethinylestradiol alters aggressive behavior of mosquitofish (Gambusia affinis) toward Japanese medaka (Oryzias latipes)[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(5):643-648
    熊甜甜, 方展强. 雌二醇、双酚A和苯并[a]芘对食蚊鱼目标基因表达的影响[J]. 生物学杂志, 2015, 32(5):19-24

    Xiong T T, Fang Z Q. Target gene expression in Gambusia affinis exposed to 17β-estradiol, bisphenol A and benzo[a]pyrene[J]. Journal of Biology, 2015, 32(5):19-24(in Chinese)

    欧瑞康, 武小燕, 库培佳, 等. 食蚊鱼(Gambusia affinis) cat、gapdh和gst基因的克隆及其在生态毒理学中的应用[J]. 生态毒理学报, 2015, 10(3):83-92

    Ou R K, Wu X Y, Ku P J, et al. Cloning of cat, gapdh and gst genes of Gambusia affinis and its application in ecotoxicology[J]. Asian Journal of Ecotoxicology, 2015, 10(3):83-92(in Chinese)

    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method[J]. Methods, 2001, 25(4):402-408
    高春蕾, 赵翠琼, 姜美洁, 等. P糖蛋白及其在水生生物多型异源物质抗性中的研究进展[J]. 海洋湖沼通报, 2016(4):80-92 Gao C L, Zhao C Q, Jiang M J, et al. Progress in P-glycoprotein and multixenobiotic resistance mechanism in aquatic organisms[J]. Transactions of Oceanology and Limnology, 2016

    (4):80-92(in Chinese)

    Guo J, Iwata H. Risk assessment of triclosan in the global environment using a probabilistic approach[J]. Ecotoxicology and Environmental Safety, 2017, 143:111-119
    Foltz J, Mottaleb M A, Meziani M J, et al. Simultaneous detection and quantification of select nitromusks, antimicrobial agent, and antihistamine in fish of grocery stores by gas chromatography-mass spectrometry[J]. Chemosphere, 2014, 107:187-193
    Rüdel H, Böhmer W, Müller M, et al. Retrospective study of triclosan and methyl-triclosan residues in fish and suspended particulate matter:Results from the German Environmental Specimen Bank[J]. Chemosphere, 2013, 91(11):1517-1524
    刘春, 李凯彬, 王庆, 等. DDT、苯并[a]芘暴露对阿部鲻虾虎鱼P糖蛋白mRNA表达的影响[J]. 生态环境学报, 2012, 21(10):1737-1741

    Liu C, Li K B, Wang Q, et al. Effects of DDT and benzo[a]pyrene exposure on expression of P-glycoprotein in Mugilogobius abei[J]. Ecology and Environmental Sciences, 2012, 21(10):1737-1741(in Chinese)

    Parenti C C, Ghilardi A, Della Torre C, et al. Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos[J]. Science of the Total Environment, 2019, 650:1752-1758
    Bao S, Nie X, Liu Y, et al. Diclofenac exposure alter the expression of PXR and its downstream target genes in mosquito fish (Gambusia affinis)[J]. Science of the Total Environment, 2018, 616:583-593
    孙雪峰, 丁君, 黄洪辉, 等. 海胆胚胎不同发育期P-糖蛋白(P-glycoprotein)药物外排功能的研究[J]. 生态毒理学报, 2009, 4(3):428-434

    Sun X F, Ding J, Huang H H, et al. Study of drug efflux function of P-glycoprotein in different developmental stages of sea urchin embryos[J]. Asian Journal of Ecotoxicology, 2009, 4(3):428-434(in Chinese)

    Liang X, Nie X, Ying G, et al. Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach[J]. Chemosphere, 2013, 90(3):1281-1288
    Amé M V, Baroni M V, Galanti L N, et al. Effects of microcystin-LR on the expression of P-glycoprotein in Jenynsia multidentata[J]. Chemosphere, 2009, 74(9):1179-1186
  • 加载中
计量
  • 文章访问数:  2108
  • HTML全文浏览数:  2108
  • PDF下载数:  98
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-11
宋晓红, 陆爱金, 杜士林, 陈双凤, 陈旺光, 梁延鹏, 黄亮亮, 曾鸿鹄. 食蚊鱼P-糖蛋白基因克隆及三氯生对其mRNA表达的影响[J]. 生态毒理学报, 2020, 15(4): 167-176. doi: 10.7524/AJE.1673-5897.20191111002
引用本文: 宋晓红, 陆爱金, 杜士林, 陈双凤, 陈旺光, 梁延鹏, 黄亮亮, 曾鸿鹄. 食蚊鱼P-糖蛋白基因克隆及三氯生对其mRNA表达的影响[J]. 生态毒理学报, 2020, 15(4): 167-176. doi: 10.7524/AJE.1673-5897.20191111002
Song Xiaohong, Lu Aijin, Du Shilin, Chen Shuangfeng, Chen Wangguang, Liang Yanpeng, Huang Liangliang, Zeng Honghu. Cloning of P-Glycoprotein Gene and Effects of Triclosan on Its mRNA Expression in Mosquitofish (Gambusia affinis)[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 167-176. doi: 10.7524/AJE.1673-5897.20191111002
Citation: Song Xiaohong, Lu Aijin, Du Shilin, Chen Shuangfeng, Chen Wangguang, Liang Yanpeng, Huang Liangliang, Zeng Honghu. Cloning of P-Glycoprotein Gene and Effects of Triclosan on Its mRNA Expression in Mosquitofish (Gambusia affinis)[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 167-176. doi: 10.7524/AJE.1673-5897.20191111002

食蚊鱼P-糖蛋白基因克隆及三氯生对其mRNA表达的影响

    通讯作者: 曾鸿鹄, E-mail: zenghonghu@glut.edu.cn
    作者简介: 宋晓红(1990-),女,硕士,实验师,研究方向为水生毒理学,E-mail:sxh215@163.com
  • 1. 桂林理工大学环境科学与工程学院, 桂林 541004;
  • 2. 广西环境污染控制理论与技术重点实验室, 桂林 541004;
  • 3. 岩溶地区水污染控制与用水安全保障协同创新中心, 桂林 541004
基金项目:

国家自然科学基金资助项目(51578171);广西科技计划项目(桂科AD18126018);广西自然科学基金资助项目(2018GXNSFAA281022)

摘要: 三氯生(TCS)是一种广谱高效抗菌剂,在水环境和生物体内均不同程度检出,对水生生物具有潜在风险。P-糖蛋白(P-gp)是生物体多型异源物质抗性防御系统中重要的"膜解毒蛋白",对水生生物体内的有毒物质和代谢产物具有重要的外排和转运作用。为探究P-gp在鱼类免疫中的作用,克隆了食蚊鱼(Gambusia affinisP-gp基因的cDNA,检测了不同浓度(50、100和150 □g·L-1) TCS暴露12 h、1 d、3 d、5 d、7 d和9 d后,P-gpmRNA相对表达量的变化。实验获得的食蚊鱼P-gpcDNA共5 452 bp,编码1 294个氨基酸,具有ABC转运蛋白家族典型的跨膜结构、功能区域和作用位点,与其他鳉形目的鱼类P-gp氨基酸序列同源性较高。TCS对P-gpmRNA表达的影响呈现倒"U"型的时间-剂量效应,50 □g·L-1和100 □g·L-1 TCS胁迫后P-gp表达量先升高后下降,100 □g·L-1暴露组表达高峰在暴露1 d时,50 □g·L-1 TCS暴露组表达高峰延迟至3 d,而150 □g·L-1暴露组P-gp表达无显著变化。结果表明,P-gp基因参与了TCS胁迫的解毒过程,有助于食蚊鱼抵抗外源污染物的毒性作用。

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回