Zucchi S, Corsi I, Luckenbach T, et al. Identification of five partial ABC genes in the liver of the Antarctic fish Trematomus bernacchii and sensitivity of ABCB1 and ABCC2 to Cd exposure[J]. Environmental Pollution, 2010, 158(8):2746-2756
Della Torre C, Bocci E, Focardi S E, et al. Differential ABCB and ABCC gene expression and efflux activities in gills and hemocytes of Mytilus galloprovincialis and their involvement in cadmium response[J]. Marine Environmental Research, 2014, 93:56-63
Pedersen J M, Khan E K, Bergström C A S, et al. Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2)[J]. European Journal of Pharmaceutical Sciences, 2017, 103:70-76
Szak á cs G, Váradi A, Özvegy-Laczka C, et al. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox)[J]. Drug Discovery Today, 2008, 13(9-10):379-393
Jeong C B, Kim H S, Kang H M, et al. ATP-binding cassette (ABC) proteins in aquatic invertebrates:Evolutionary significance and application in marine ecotoxicology[J]. Aquatic Toxicology, 2017, 185:29-39
王芳, 李凯彬, 聂湘平, 等. 剑尾鱼P-糖蛋白基因全长cDNA克隆、分析及组织分布[J]. 水生生物学报, 2013, 37(5):817-823 Wang F, Li K B, Nie X P, et al. P-glycoprotein of swordtail fish Xiphophorus helleri:cDNA cloning, bioinformatic and tissue-specific expression analysis[J]. Acta Hydrobiologica Sinica, 2013, 37(5):817-823(in Chinese)
Bard S M, Woodin B R, Stegeman J J. Expression of P-glycoprotein and cytochrome P4501A in intertidal fish (Anoplarchus purpurescens) exposed to environmental contaminants[J]. Aquatic Toxicology, 2002, 60(1-2):17-32
Jeong C B, Kim D H, Kang H M, et al. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana[J]. Aquatic Toxicology, 2017, 183:144-155
胡鲲, 程钢, 吕利群, 等. 基于P-糖蛋白基因表达评价尼罗罗非鱼体内恩诺沙星代谢"首过效应"[J]. 中国水产科学, 2013, 20(2):411-418 Hu K, Cheng G, Lv L Q, et al. Association between permeability glycoprotein expression and enrofloxacin metabolism to evaluate the first-pass effect in Oreochomis niloticus Linn[J]. Journal of Fishery Sciences of China, 2013, 20(2):411-418(in Chinese)
Marques-Santos L F, Hégaret H, Lima-Santos L, et al. ABCB1 and ABCC1-like transporters in immune system cells from sea urchins Echinometra lucunter and Echinus esculentus and oysters Crassostrea gasar and Crassostrea gigas[J]. Fish & Shellfish Immunology, 2017, 70:195-203
Valton E, Amblard C, Wawrzyniak I, et al. P-gp expression in brown trout erythrocytes:Evidence of a detoxification mechanism in fish erythrocytes[J]. Scientific Reports, 2013, 3:3422
Shanmugam G, Ramasamy K, Selvaraj K K, et al. Triclosan in fresh water fish Gibelion catla from the Kaveri River, India, and its consumption risk assessment[J]. Environmental Forensics, 2014, 15(3):207-212
Escarrone A L V, Caldas S S, Primel E G, et al. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater[J]. Science of the Total Environment, 2016, 560:218-224
Carmona E, Andreu V, Picó Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin:From waste to drinking water[J]. Science of the Total Environment, 2014, 484:53-63
Lyndall J, Barber T, Mahaney W, et al. Evaluation of triclosan in Minnesota lakes and rivers:Part Ι-Ecological risk assessment[J]. Ecotoxicology and Environmental Safety, 2017, 142:578-587
Yao L, Zhao J L, Liu Y S, et al. Personal care products in wild fish in two main Chinese rivers:Bioaccumulation potential and human health risks[J]. Science of the Total Environment, 2018, 621:1093-1102
Ho J C, Hsiao C D, Kawakami K, et al. Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos[J]. Aquatic Toxicology, 2016, 173:29-35
Fritsch E B, Connon R E, Werner I, et al. Triclosan impairs swimming behavior and alters expression of excitation-contraction coupling proteins in fathead minnow (Pimephales promela s)[J]. Environmental Science & Technology, 2013, 47(4):2008-2017
Veldhoen N, Skirrow R C, Osachoff H, et al. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development[J]. Aquatic Toxicology, 2006, 80(3):217-227
Horie Y, Yamagishi T, Takahashi H, et al. Effects of triclosan on Japanese medaka (Oryzias latipes) during embryo development, early life stage and reproduction[J]. Journal of Applied Toxicology, 2018, 38(4):544-551
Rautenberg G E, Amé M V, Monferrán M V, et al. A multi-level approach using Gambusia affinis as a bioindicator of environmental pollution in the middle-lower basin of Suquía River[J]. Ecological Indicators, 2015, 48:706-720
Huang G Y, Liu Y S, Liang Y Q, et al. Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents[J]. Science of the Total Environment, 2016, 563:273-281
Dang H M, Inagaki Y, Yamauchi Y, et al. Acute exposure to 17α-ethinylestradiol alters aggressive behavior of mosquitofish (Gambusia affinis) toward Japanese medaka (Oryzias latipes)[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(5):643-648
熊甜甜, 方展强. 雌二醇、双酚A和苯并[a]芘对食蚊鱼目标基因表达的影响[J]. 生物学杂志, 2015, 32(5):19-24 Xiong T T, Fang Z Q. Target gene expression in Gambusia affinis exposed to 17β-estradiol, bisphenol A and benzo[a]pyrene[J]. Journal of Biology, 2015, 32(5):19-24(in Chinese)
欧瑞康, 武小燕, 库培佳, 等. 食蚊鱼(Gambusia affinis) cat、gapdh和gst基因的克隆及其在生态毒理学中的应用[J]. 生态毒理学报, 2015, 10(3):83-92 Ou R K, Wu X Y, Ku P J, et al. Cloning of cat, gapdh and gst genes of Gambusia affinis and its application in ecotoxicology[J]. Asian Journal of Ecotoxicology, 2015, 10(3):83-92(in Chinese)
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method[J]. Methods, 2001, 25(4):402-408
高春蕾, 赵翠琼, 姜美洁, 等. P糖蛋白及其在水生生物多型异源物质抗性中的研究进展[J]. 海洋湖沼通报, 2016(4):80-92 Gao C L, Zhao C Q, Jiang M J, et al. Progress in P-glycoprotein and multixenobiotic resistance mechanism in aquatic organisms[J]. Transactions of Oceanology and Limnology, 2016 (4):80-92(in Chinese)
Guo J, Iwata H. Risk assessment of triclosan in the global environment using a probabilistic approach[J]. Ecotoxicology and Environmental Safety, 2017, 143:111-119
Foltz J, Mottaleb M A, Meziani M J, et al. Simultaneous detection and quantification of select nitromusks, antimicrobial agent, and antihistamine in fish of grocery stores by gas chromatography-mass spectrometry[J]. Chemosphere, 2014, 107:187-193
Rüdel H, Böhmer W, Müller M, et al. Retrospective study of triclosan and methyl-triclosan residues in fish and suspended particulate matter:Results from the German Environmental Specimen Bank[J]. Chemosphere, 2013, 91(11):1517-1524
刘春, 李凯彬, 王庆, 等. DDT、苯并[a]芘暴露对阿部鲻虾虎鱼P糖蛋白mRNA表达的影响[J]. 生态环境学报, 2012, 21(10):1737-1741 Liu C, Li K B, Wang Q, et al. Effects of DDT and benzo[a]pyrene exposure on expression of P-glycoprotein in Mugilogobius abei[J]. Ecology and Environmental Sciences, 2012, 21(10):1737-1741(in Chinese)
Parenti C C, Ghilardi A, Della Torre C, et al. Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos[J]. Science of the Total Environment, 2019, 650:1752-1758
Bao S, Nie X, Liu Y, et al. Diclofenac exposure alter the expression of PXR and its downstream target genes in mosquito fish (Gambusia affinis)[J]. Science of the Total Environment, 2018, 616:583-593
孙雪峰, 丁君, 黄洪辉, 等. 海胆胚胎不同发育期P-糖蛋白(P-glycoprotein)药物外排功能的研究[J]. 生态毒理学报, 2009, 4(3):428-434 Sun X F, Ding J, Huang H H, et al. Study of drug efflux function of P-glycoprotein in different developmental stages of sea urchin embryos[J]. Asian Journal of Ecotoxicology, 2009, 4(3):428-434(in Chinese)
Liang X, Nie X, Ying G, et al. Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach[J]. Chemosphere, 2013, 90(3):1281-1288
Amé M V, Baroni M V, Galanti L N, et al. Effects of microcystin-LR on the expression of P-glycoprotein in Jenynsia multidentata[J]. Chemosphere, 2009, 74(9):1179-1186