MgO NPs及其析出的Mg2+对细叶蜈蚣草(Egeria najas)光合作用的影响
Effects of MgO NPs and Their Released Mg2+ on the Photosynthesis of Egeria najas
-
摘要: 以细叶蜈蚣草(Egeria najas)为受试植物,研究MgO NPs及其析出的Mg2+对水生植物光合作用的影响。结果表明,MgO NPs抑制了光系统Ⅱ反应中心之间的连通性及受体侧的电子传递,而Mg2+则提升了光系统活性和光能转化率,因而排除了MgO NPs中析出的Mg2+对细叶蜈蚣草光合作用的毒性。对Mg2+浓度的原位实时检测表明,MgO NPs悬浮液中Mg2+浓度并非常数。在培养细叶蜈蚣草初期,悬浮液中Mg2+析出浓度范围为0.3~1.0 mg·L-1,随时间推移析出浓度逐渐增高并在24 h后达到饱和值0.7~2.4 mg·L-1。未培养细叶蜈蚣草时悬浮液中析出的Mg2+浓度要更大,24 h后浓度范围达到0.9~2.8 mg·L-1。这些结果弥补了以往研究中未能对MgO NPs析出的Mg2+浓度进行动态检测的不足。比较细叶蜈蚣草对MgO NPs悬浮液中和MgCl2溶液中的Mg2+的表观吸收量会发现MgO NPs抑制了细叶蜈蚣草对Mg2+的吸收。Abstract: Egeria najas was used as a test plant to study the effects of MgO NPs and their released Mg2+ on the photosynthesis of aquatic plants. The results showed that MgO NPs inhibited the connectivity between the photosystem Ⅱ (PS Ⅱ) reaction centers and the electron transport on the receptor side. But Mg2+ enhanced the activity of photosystem and the conversion efficiency of light energy, thus eliminated the toxicity of the released Mg2+ on the photosynthesis of Egeria najas. In situ real-time detection of Mg2+ concentration indicated that the Mg2+ concentration in the MgO NPs suspension was not constant. In the early stage of the cultivation of Egeria najas, the concentration of Mg2+ in the suspension ranged within 0.3~1.0 mg·L-1. The concentration increased gradually with time and reached a saturation value of 0.7~2.4 mg·L-1 after 24 h. The saturation concentration of Mg2+ in the suspension without Egeria najas in it was much higher, ranged within 0.9~2.8 mg·L-1 after 24 h. These results made up for the lack of dynamic detection of Mg2+ concentrations in MgO NPs suspensions in previous studies. Comparing the apparent uptake of Mg2+ in MgO NPs suspension and MgCl2 solution showed that MgO NPs inhibited the absorption of Mg2+ by Egeria najas.
-
Key words:
- MgO nanoparticle /
- Mg2+ /
- Egeria najas /
- photosynthesis /
- ion selective microelectrode /
- chlorophyll a fluorescence
-
-
Lee H E, Ahn H Y, Mun J, et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles[J]. Nature, 2018, 556(7701):360-365 Shen L, Xing Z, Zou J, et al. Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance[J]. Scientific Reports, 2017, 7:41978 Hossain F, Peraales P O J, Hwang S, et al. Antimicrobial nanomaterials as water disinfectant:Applications, limitations and future perspectives[J]. Science of the Total Environment, 2014, 466-467:1047-1059 Velmurugan R, Incharoensakdi A. MgO-Fe3O4 linked cellulase enzyme complex improves the hydrolysis of cellulose from Chlorella sp. CYB2[J]. Biochemical Engineering Journal, 2017, 122:22-30 Leung Y H, Ng A M, Xu X, et al. Mechanisms of antibacterial activity of MgO:Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J]. Small, 2014, 10(6):1171-1183 Pavithra S, Manikandan S, Saranprabhu M K, et al. Ultrasonication assisted co-dispersion of nanostructured magnesium-lined paraffin wax and magnesium oxide in a heat transfer fluid for energy related applications[J]. Journal of Molecular Liquids, 2018, 271:828-837 Meza L R, Das S, Greer J R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 2014, 345(6202):1322-1326 Ghobadian M, Nabiuni M, Parivar K, et al. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2015, 122:260-267 Ali D, Ali H, Alarifi S, et al. Eco-toxic efficacy of nano-sized magnesium oxide in freshwater snail Radix leuteola L[J]. Fresenius Environmental Bulletin, 2016, 25(4):1234-1242 喻燚, 李巧玉, 董聪聪, 等. 4-壬基酚对拟柱胞藻生长、抗氧化酶和光合作用的影响及机理[J]. 生态毒理学报, 2018, 13(6):259-267 Yu Y, Li Q Y, Dong C C, et al. Effect and mechanism of 4-nonylphenol on the growth, antioxidative enzymes and photosynthesis of Cylindrospermopsis raciborsk Ⅱ[J]. Asian Journal of Ecotoxicology, 2018, 13(6):259-267(in Chinese)
Fratamico A, Tocquin P, Franck F. The chlorophyll a fluorescence induction curve in the green microalga Haematococcus pluvialis:Further insight into the nature of the P-S-M fluctuation and its relationship with the "low-wave" phenomenon at steady-state[J]. Photosynthesis Research, 2016, 128(3):1-15 Goltsev V, Zaharieva I, Chernev P, et al. Drought-induced modifications of photosynthetic electron transport in intact leaves:Analysis and use of neural networks as a tool for a rapid non-invasive estimation[J]. Biochimica et Biophysica Acta Bioenergetics, 2012, 1817(8):1490-1498 吴敏兰, 李荭荭, 贾洋洋, 等. 砷胁迫对不同烟草品种光合色素和叶绿素荧光特性的影响[J]. 生态毒理学报, 2015, 10(3):216-223 Wu M L, Li H H, Jia Y Y, et al. Influence of arsenic stress on the photosynthetic pigments and chlorophyll fluorescence characteristics of different tobacco cultivars[J]. Asian Journal of Ecotoxicology, 2015, 10(3):216-223(in Chinese)
Antal T K, Krendeleva T E, Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae:Relation to hydrogen production[J]. Photosynthesis Research, 2015, 125(3):357-381 Zhu X, Taylor A, Zhang S, et al. Measuring spatial and temporal Ca2+ signals in Arabidopsis plants[J]. Journal of Visualized Experiments, 2014(91):e51945 吴明珠, 何梅琳, 邹山梅, 等. 纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7):1259-1267 Wu M Z, He M L, Zou S M, et al. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus[J]. Environmental Chemistry, 2015, 34(7):1259-1267(in Chinese)
Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles[J]. Environmental Science & Technology, 2008, 42(15):5580-5585 Portis A R, Heldt H W. Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts[J]. Biochimica et Biophysica Acta, 1976, 449(3):434-446 Geisler L J, Wang Q, Yao Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana[J]. Nanotoxicology, 2013, 7(3):323-337 Perreault F, Samadani M, Dewez D. Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L[J]. Nanotoxicology, 2014, 8(4):374-382 Zheng Y, Hou L, Liu M, et al. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments[J]. Science Advances, 2017, 3(8):e1603229 Liu J Y, Hurt R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science & Technology, 2010, 44(6):2169-2175 Küpper H, Andresen E. Mechanisms of metal toxicity in plants[J]. Metallomics, 2016, 8(3):269-285 -

计量
- 文章访问数: 2035
- HTML全文浏览数: 2035
- PDF下载数: 97
- 施引文献: 0