无机砷在淡水底栖动物摇蚊幼虫中的吸收和累积
Bioaccumulation of Inorganic Arsenic in the Freshwater Zoobenthos Chironomid Larvae
-
摘要: 砷(As)是一种典型的毒害性类金属元素,在水环境中以多种化学形态存在,这影响了As的生物利用度和生理毒性效应。以摇蚊幼虫(chironomid larvae)为对象,探讨其暴露于亚砷酸盐(arsenite,As(Ⅲ))和砷酸盐(arsenate,As(Ⅴ))水溶液中的生物累积规律。结果表明,摇蚊幼虫中As的累积与暴露时间有关,且对As(Ⅲ)的累积较As(Ⅴ)明显。摇蚊幼虫对无机As的生物利用度较低,50 μg·L-1 As(Ⅲ)暴露组和100 μg·L-1 As(Ⅲ)暴露组中摇蚊幼虫对无机As的累积量与对照组相比均没有显著性差异;50 μg·L-1和100 μg·L-1 As(Ⅴ)暴露组中摇蚊幼虫体内总As浓度与对照组相比也没有显著增加。在高浓度的无机As暴露条件下,摇蚊幼虫对As(Ⅲ)的生物利用度高于As(Ⅴ)。暴露于As(Ⅲ)和As(Ⅴ)不同时间后,摇蚊幼虫中总As浓度随无机As暴露浓度升高而逐渐增加,但生物累积能力随无机As暴露浓度的升高反而降低。Abstract: Arsenic (As) is a typical toxic metalloid element, which exists in several speciations in aquatic environment. Arsenic speciation affects its bioavailability and physiological toxicity. The purpose of this study is to probe the bioaccumulation pattern of arsenic by chironomid larvae when exposed to water solutions with different concentrations of arsenite (As(Ⅲ)) or arsenate (As(Ⅴ)). The experimental results showed that the accumulation of arsenic in chironomid larvae was related to the exposure time. Compared with As(Ⅴ), As(Ⅲ) was accumulated more significantly by the chironomid larvae. The chironomid larvae had limited ability to bioaccumulate inorganic As from freshwater. There was no significant difference in the accumulation of As between the control group and 50 μg·L-1 or 100 μg·L-1 As(Ⅲ) exposure group. Similar results were observed when chironomid larvae were exposed to 50 μg·L-1 or 100 μg·L-1 As(Ⅴ). When exposed to high concentration of inorganic As, the bioavailability of As(Ⅲ) by chironomid larvae was higher than that of As(Ⅴ). The total As content in chironomid larvae increased gradually with the increase of the exposure concentration of inorganic As, whereas the bioaccumulation ability of inorganic As decreased.
-
Key words:
- arsenic /
- chironomid larvae /
- bioaccumulation
-
-
Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5):517-568 Mandal B K, Suzuki K T. Arsenic round the world:A review[J]. Talanta, 2002, 58(1):201-235 Nguyen V A, Bang S, Viet P H, et al. Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam Province, Vietnam[J]. Environment International, 2009, 35(3):466-472 Migon C, Mori C, Tian R, et al. Arsenic and antimony contamination in a riverine environment affected by an abandoned realgar mine[J]. Toxicological & Environmental Chemistry Reviews, 1995, 52(1-4):221-230 Mori C, Orsini A, Migon C. Impact of arsenic and antimony contamination on benthic invertebrates in a minor Corsican river[J]. Hydrobiologia, 1999, 392(1):73-80 Migon C, Mori C. Arsenic and antimony release from sediments in a Mediterranean estuary[J]. Hydrobiologia, 1999, 392(1):81-88 Culioli J L, Calendini S, Mori C, et al. Arsenic accumulation in a freshwater fish living in a contaminated river of Corsica, France[J]. Ecotoxicology & Environmental Safety, 2009, 72(5):1440-1445 Foley R E, Spotila J R, Giesy J P, et al. Arsenic concentrations in water and fish from Chautauqua Lake, New York[J]. Environmental Biology of Fishes, 1978, 3(4):361-367 Jin X L, Ren J, Xia F. The research progress on the arsenic pollution of the rivers and lakes in China[J]. Environmental Science Survey, 2012, 31(5):26-31 张玉宝, 徐颖, 储昭升, 等. 洞庭湖平原中小型湖群沉积物中砷污染特征与评价[J]. 湖泊科学, 2011, 23(5):695-700 Zhang Y B, Xu Y, Chu Z S, et al. Characteristics and evaluation of arsenic pollution in sediments of small and medium lakes in Dongting Lake Plain[J]. Journal of Lake Sciences, 2011, 23(5):695-700(in Chinese)
Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576):2143-2145 Wang S, Cao X, Lin C, et al. Arsenic content and fractionation in the surface sediments of the Guangzhou section of the Pearl River in Southern China[J]. Journal of Hazardous Materials, 2010, 183(1):264-270 李世玉, 刘彬, 杨常亮, 等. 上覆水pH值和总磷浓度对含铁盐的高砷沉积物中砷迁移转化的影响[J]. 湖泊科学, 2015, 27(6):1101-1106 Li S Y, Liu B, Yang C L, et al. Effect of pH and total phosphorus concentration of overlying water on arsenic mobilization in the sediments containing high arsenic and iron salts[J]. Journal of Lake Sciences, 2015, 27(6):1101-1106(in Chinese)
Yamaoka Y, Takimura O, Fuse H, et al. Effect of glutathione on arsenic accumulation by Dunaliella salina[J]. Applied Organometallic Chemistry, 1999, 13(2):89-94 Oscarson D W, Huang P M, Liaw W K. The oxidation of arsenite by aquatic sediments[J]. Journal of Environmental Quality, 1980, 9(4):700-703 Penrose W R, Woolson E A. Arsenic in the marine and aquatic environments:Analysis, occurrence, and significance[J]. C R C Critical Reviews in Environmental Control, 1974, 4(1-4):465-482 Bissen M, Frimmel F H. Arsenic-A Review. Part I:Occurrence, toxicity, speciation, mobility[J]. Acta Hydrochimica Et Hydrobiologica, 2003, 31(1):9-18 Sharma V K, Sohn M. Aquatic arsenic:Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4):743-759 Jomova K, Jenisova Z, Feszterova M, et al. Arsenic:Toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology, 2011, 31(2):95-107 Sabbioni E, Fischbach M, Pozzi G, et al. Cellular retention, toxicity and carcinogenic potential of seafood arsenic. I. Lack of cytotoxicity and transforming activity of arsenobetaine in the BALB/3T3 cell line[J]. Carcinogenesis, 1991, 12(7):1287-1291 Hasegawa H, Sohrin Y, Seki K, et al. Biosynthesis and release of methylarsenic compounds during the growth of freshwater algae[J]. Chemosphere, 2001, 43(3):265-272 Suhendrayatna, Ohki A, Maeda S. Biotransformation of arsenite in freshwater food-chain models[J]. Applied Organometallic Chemistry, 2001, 15(4):277-284 Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for arsenic. TP-92/02[R]. Atlanta:Agency for Toxic Substances and Disease Registry, U S Department of Health & Human Services:2000 Zhang W, Guo Z, Zhou Y, et al. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish[J]. Aquatic Toxicology, 2016, 179:65-71 Tariq J, Jaffar M, Ashraf M. Levels of selected heavy metals in commercial fish from five freshwater lakes, Pakistan[J]. Toxicological & Environmental Chemistry Reviews, 1991, 33(1-2):133-140 Vala A K, Davariya V, Upadhyay R V. An investigation on tolerance and accumulation of a facultative marine fungus Aspergillus flavus to pentavalent arsenic[J]. Journal of Ocean University of China, 2010, 9(1):65-67 Ray K, Adi L, Boaz M, et al. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations[J]. Frontiers in Microbiology, 2015, 6:154 Langston W J. Availability of arsenic to estuarine and marine organisms:A field and laboratory evaluation[J]. Marine Biology, 1984, 80(2):143-154 Geiszinger A E, Goessler W, Francesconi K A. The marine polychaete Arenicola marina:Its unusual arsenic compound pattern and its uptake of arsenate from seawater[J]. Marine Environmental Research, 2002, 53(1):37-50 Zhang W, Huang L, Wang W X. Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure[J]. Journal of Hazardous Materials, 2012, 221-222(4):162-169 Kristiina V, Matti T L, Chen X P, et al. Metal bioavailability in ecological risk assessment of freshwater ecosystems:From science to environmental management[J]. Ecotoxicology and Environmental Safety, 2017, 147:430-446 Proulx I, Hare L, Dupré B. Is it justifiable to pool Chironomus species in trace element contamination studies?[J]. Environmental Toxicology and Chemistry, 2019, 38(1):145-159 中华人民共和国水利部. SL.327.1-2005水质砷的测定原子荧光光度法[S]. 北京:中国标准出版社, 2005 中华人民共和国卫生部. GB5009.11-2003食品中总砷及无机砷的测定[S]. 北京:中国标准出版社, 2003 U S Environmental Protection Agency (US EPA). Methodology for deriving ambient water quality criteria for the protection of human health[R]. Washington DC:Office of Water, US EPA, 2000 U S Environmental Protection Agency (US EPA). Technical summary of information available on the bioaccumulation of arsenic in aquatic organisms[R]. Office of Science and Technology, Office of Water, US EPA, 2003 Mogren C L, Kiparski G R V, Parker D R, et al. Survival, reproduction, and arsenic body burdens in Chironomus riparius exposed to arsenate and phosphate[J]. Science of the Total Environment, 2012, 425:60-65 Ahearn G A, Mandal P K, Mandal A. Mechanisms of heavy-metal sequestration and detoxification in crustaceans:A review[J]. Journal of Comparative Physiology B, 2004, 174(6):439-452 Chen L, Zhang W, Guo Z, et al. Effects of acclimation on arsenic bioaccumulation and biotransformation in freshwater medaka Oryzias mekongensis after chronic arsenic exposure[J]. Environmental Pollution, 2018, 238:17-25 Bergey L L, Weis J S. Molting as a mechanism of depuration of metals in the fiddler crab, Uca pugnax[J]. Marine Environmental Research, 2007, 64(5):556-562 Mogren C L, Webb S M, Walton W E, et al. Micro x-ray absorption spectroscopic analysis of arsenic localization and biotransformation in Chironomus riparius Meigen (Diptera:Chironomidae) and Culex tarsalis Coquillett (Culicidae)[J]. Environmental Pollution, 2013, 180(3):78-83 Wrench J, Fowler S W, Vnlü M Y. Arsenic metabolism in a marine food chain[J]. Marine Pollution Bulletin, 1979, 10(1):18-20 Sanders J G, Osman R W, Riedel G F. Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filter-feeding invertebrates Eurytemora affinis, Balanus improvisus, and Crassostrea virginica[J]. Marine Biology, 1989, 103(3):319-325 Ciardullo S, Aureli F, Coni E, et al. Bioaccumulation potential of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss) as a function of fish growth[J]. Journal of Agricultural & Food Chemistry, 2008, 56(7):2442-2451 陈丽竹, 王丹, 曹瑞文, 等. 菲律宾蛤仔对三价和五价无机砷的富集转化规律[J]. 海洋通报, 2017, 36(3):326-332 Chen L Z, Wang D, Cao R W, et al. Bioaccumulation and biotransformation of inorganic arsenic in Ruditapes philippinarum[J]. Marin Science Bulletin, 2017, 36(3):326-332(in Chinese)
Zhang W, Guo Z, Zhou Y, et al. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata[J]. Aquatic Toxicology, 2015, 158:33-40 Gailer J, Lrgolic K J, Francesconi K A, et al. Metabolism of arsenic compounds by the blue mussel mytilus edulis after accumulation from seawater spiked with arsenic compounds[J]. Applied Organometallic Chemistry, 1995, 9(4):341-355 Suhendrayatna, Ohki A, Nakajima T, et al. Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese medaka, Oryzias latipes[J]. Chemosphere, 2002, 46(2):319-324 Suhendrayatna, Ohki A, Nakajima T, et al. Studies on the accumulation and transformation of arsenic in freshwater organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica[J]. Chemosphere, 2002, 46(2):325-331 Zhang W, Wang W X. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes[J]. Science of the Total Environment, 2017, 616-617:594-601 张伟, 黄良民. 海洋生物体内砷含量及其形态研究进展[J]. 生态毒理学报, 2019, 14(1):41-53 Zhang W, Huang L M. Advances of arsenic contents and different species in marine organisms[J]. Asian Journal of Ecotoxicology, 2019, 14(1):41-53(in Chinese)
Usese A, Chukwu O L, Rahman M M, et al. Concentrations of arsenic in water and fish in a tropical open lagoon, Southwest-Nigeria:Health risk assessment, Part 1[J]. Environmental Technology & Innovation, 2017, 8:164-171 Wang Z H, Luo Z X, Yan C Z, et al. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa[J]. Environmental Science & Pollution Research, 2013, 20(10):7286-7295 Zhang W, Guo Z, Song D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China[J]. Science of the Total Environment, 2018, 626:621-629 -

计量
- 文章访问数: 1502
- HTML全文浏览数: 1502
- PDF下载数: 91
- 施引文献: 0