纳米氧化锌对美国红鱼肝细胞的毒性效应及机制

朱跃骅, 张剑, 钱云霞. 纳米氧化锌对美国红鱼肝细胞的毒性效应及机制[J]. 生态毒理学报, 2020, 15(4): 224-232. doi: 10.7524/AJE.1673-5897.20190319001
引用本文: 朱跃骅, 张剑, 钱云霞. 纳米氧化锌对美国红鱼肝细胞的毒性效应及机制[J]. 生态毒理学报, 2020, 15(4): 224-232. doi: 10.7524/AJE.1673-5897.20190319001
Zhu Yuehua, Zhang Jian, Qian Yunxia. Toxic Effect and Mechanism of Nano-ZnO in Hepatocytes of Sciaenops ocellatus[J]. Asian journal of ecotoxicology, 2020, 15(4): 224-232. doi: 10.7524/AJE.1673-5897.20190319001
Citation: Zhu Yuehua, Zhang Jian, Qian Yunxia. Toxic Effect and Mechanism of Nano-ZnO in Hepatocytes of Sciaenops ocellatus[J]. Asian journal of ecotoxicology, 2020, 15(4): 224-232. doi: 10.7524/AJE.1673-5897.20190319001

纳米氧化锌对美国红鱼肝细胞的毒性效应及机制

    作者简介: 朱跃骅(1993-),男,硕士研究生,研究方向为海洋环境与水产病害研究,E-mail:15757826826@163.com
    通讯作者: 钱云霞, E-mail: qianyunxia@nbu.edu.cn
  • 基金项目:

    国家重点研发计划重点专项(2016YFC1402405)

  • 中图分类号: X171.5

Toxic Effect and Mechanism of Nano-ZnO in Hepatocytes of Sciaenops ocellatus

    Corresponding author: Qian Yunxia, qianyunxia@nbu.edu.cn
  • Fund Project:
  • 摘要: 纳米氧化锌(ZnO NPs)的广泛应用所引发的环境与健康风险备受关注。为探究ZnO NPs对水生生物的毒性影响,以美国红鱼的原代肝细胞为实验对象,通过MTT法和中性红摄取(NRU)法检测细胞存活率,以评估ZnO NPs的细胞毒性;美国红鱼肝细胞经ZnO NPs处理6 h后,检测肝细胞内丙二醛(MDA)含量,并用流式细胞仪检测细胞对ZnO NPs的吞噬、胞内活性氧(ROS)的释放以及细胞凋亡率的变化。结果表明,美国红鱼肝细胞暴露于37.5 μg·mL-1和50 μg·mL-1 ZnO NPs 6 h后,细胞存活率较对照组显著降低,且ZnO NPs的毒性具有浓度和时间依赖性。研究表明,ZnO NPs进入细胞后,细胞内ROS产量增加,引起氧化应激,诱导细胞凋亡。
  • 加载中
  • 刘林, 赵群芬, 金凯星, 等. 纳米氧化锌对斑马鱼肝脏的毒性效应[J]. 环境科学, 2015, 36(10):3884-3891

    Liu L, Zhao Q F, Jin K X, et al. Toxic effect of nano-ZnO in liver of zebrafish[J]. Environmental Science, 2015, 36(10):3884-3891(in Chinese)

    Reed R B, Ladner D A, Higgins C P, et al. Solubility of nano-zinc oxide in environmentally and biologically important matrices[J]. Environmental Toxicology and Chemistry, 2012, 31(1):93-99
    Topkaya E, Konyar M, Yatmaz H C, et al. Pure ZnO and composite ZnO/TiO2 catalyst plates:A comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions[J]. Journal of Colloid and Interface Science, 2014, 430:6-11
    李曼璐, 姜玥璐. 人工纳米颗粒在水体中的行为及其对浮游植物的影响[J]. 环境科学, 2015, 36(1):365-372

    Li M L, Jiang Y L. Behaviors of engineered nanoparticles in aquatic environments and impacts on marine phytoplankton[J]. Environmental Science, 2015, 36(1):365-372(in Chinese)

    Yu L P, Fang T, Xiong D W, et al. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation,·OH production and particle dissolution in distilled water[J]. Journal of Environmental Monitoring, 2011, 13(7):1975-1982
    Xia T, Zhao Y, Sager T, et al. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos[J]. ACS Nano, 2011, 5(2):1223-1235
    Zhao X, Wang S, Wu Y, et al. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish[J]. Aquatic Toxicology, 2013, 136(14):49-59
    Xiong D, Fang T, Yu L, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish:Acute toxicity, oxidative stress and oxidative damage[J]. Science of the Total Environment, 2011, 409(8):1444-1452
    Li J, Chen Z, Huang R, et al. Toxicity assessment and histopathological analysis of nano-ZnO against marine fish (Mugilogobius chulae) embryos[J]. Journal of Environmental Sciences, 2018, 73(11):78-88
    杨皓月, 李丕鹏, 陆宇燕. 环境污染物对脊椎动物甲状腺及甲状腺激素影响的研究现状[J]. 环境化学, 2012, 31(6):823-829

    Yang H Y, Li P P, Lu Y Y. Impact of environmental pollutants on vertebrate thyroidsystems[J]. Environmental Chemistry, 2012, 31(6):823-829(in Chinese)

    喻文娟, 李聃, 王翔凌, 等. 大口黑鲈原代肝细胞的培养及其应用于CYP450活性的诱导[J]. 海洋渔业, 2008, 30(1):31-36

    Yu W J, Li D, Wang X L, et al. Studies of Micropterus salmoides on the culture of primary hepatocytes and on the induction of CYP450 activity[J]. Marine Fisheries, 2008, 30(1):31-36(in Chinese)

    张润蔚, 王玲, 张春晓, 等. 过氧化氢诱导斜带石斑鱼原代肝细胞氧化损伤模型的构建[J]. 动物营养学报, 2017(4):144-149 Zhang R W, Wang L, Zhang C X, et al. Establishment of oxidative damage model of primary hepatocytes of grouper (Epinephelus coioides) induced by hydrogen peroxide[J]. Chinese Journal of Animal Nutrition, 2017

    (4):144-149(in Chinese)

    Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2)[J]. Apoptosis, 2012, 17(8):852-870
    刘友平, 丁慧荣, 何涛, 等. 一种简单、经济、高效的大量肝细胞培养方法[J]. 生物学通报, 2005, 40(1):47-48

    Liu Y P, Ding H R, He T, et al. A simple, economical and efficient method for culturing a large number of hepatocytes[J] Bulletin of Biology, 2005, 40(1):47-48(in Chinese)

    Suzuki H, Toyooka T, Ibuki Y. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis[J]. Environmental Science & Technology, 2007, 41(8):3018-3024
    冼健安, 苟妮娜, 陈晓丹, 等. 流式细胞术检测虾类血细胞活性氧含量方法的建立[J]. 海洋科学, 2012, 36(2):29-33

    Xian J A, Gou N N, Chen X D, et al. Measurement of reactive oxygen species (ROS) production in shrimp haemocyte by flow cytometry[J]. Marine Sciences, 2012, 36(2):29-33(in Chinese)

    Monteiro-Riviere N A, Inman A O, Zhang L W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line[J]. Toxicology and Applied Pharmacology, 2009, 234(2):222-235
    Dhawan A, Sharma V. Toxicity assessment of nanomaterials:Methods and challenges[J]. Analytical and Bioanalytical Chemistry, 2010, 398(2):589-605
    Jiang Q, Li X, Cheng S, et al. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages[J]. Environmental Toxicology and Pharmacology, 2016, 48:103-109
    Wang Y, Aker W G, Hwang H M, et al. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells[J]. Science of the Total Environment, 2011, 409(22):4753-4762
    Fern á ndez D, García-Gómez C, Babín M. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells[J]. Science of the Total Environment, 2013, 452-453(5):262-274
    Lykkesfeldt J, Svendsen O. Oxidants and antioxidants in disease:Oxidative stress in farm animals[J]. Veterinary Journal, 2014, 173(3):502-511
    Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials:The role of particle size, shape and composition[J]. Journal of Applied Toxicology, 2010, 29(1):69-78
    Yin H, Casey P S, Mccall M J, et al. Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles[J]. Langmuir, 2010, 26(19):15399-15408
    Albairuty G A, Shaw B J, Handy R D, et al. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology, 2013, 126:104-115
    De Berardis D, Conti C, Serroni N, et al. The effect of newer serotonin-noradrenalin antidepressants on cytokine production:A review of the current literature[J]. International Journal of Immunopathology and Pharmacology, 2010, 23(2):417-422
    Yu K N, Yoon T J, Minai-Tehrani A, et al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation[J]. Toxicology in Vitro, 2013, 27(4):1187-1195
    Wahab R, Siddiqui M A, Saquib Q, et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity[J]. Colloids & Surfaces B Biointerfaces, 2014, 117(7):267-276
    Rachek L I, Yuzefovych L V, Ledoux S P, et al. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes[J]. Toxicology and Applied Pharmacology, 2009, 240(3):348-354
  • 加载中
计量
  • 文章访问数:  2107
  • HTML全文浏览数:  2107
  • PDF下载数:  121
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-19
朱跃骅, 张剑, 钱云霞. 纳米氧化锌对美国红鱼肝细胞的毒性效应及机制[J]. 生态毒理学报, 2020, 15(4): 224-232. doi: 10.7524/AJE.1673-5897.20190319001
引用本文: 朱跃骅, 张剑, 钱云霞. 纳米氧化锌对美国红鱼肝细胞的毒性效应及机制[J]. 生态毒理学报, 2020, 15(4): 224-232. doi: 10.7524/AJE.1673-5897.20190319001
Zhu Yuehua, Zhang Jian, Qian Yunxia. Toxic Effect and Mechanism of Nano-ZnO in Hepatocytes of Sciaenops ocellatus[J]. Asian journal of ecotoxicology, 2020, 15(4): 224-232. doi: 10.7524/AJE.1673-5897.20190319001
Citation: Zhu Yuehua, Zhang Jian, Qian Yunxia. Toxic Effect and Mechanism of Nano-ZnO in Hepatocytes of Sciaenops ocellatus[J]. Asian journal of ecotoxicology, 2020, 15(4): 224-232. doi: 10.7524/AJE.1673-5897.20190319001

纳米氧化锌对美国红鱼肝细胞的毒性效应及机制

    通讯作者: 钱云霞, E-mail: qianyunxia@nbu.edu.cn
    作者简介: 朱跃骅(1993-),男,硕士研究生,研究方向为海洋环境与水产病害研究,E-mail:15757826826@163.com
  • 宁波大学海洋学院, 宁波 315823
基金项目:

国家重点研发计划重点专项(2016YFC1402405)

摘要: 纳米氧化锌(ZnO NPs)的广泛应用所引发的环境与健康风险备受关注。为探究ZnO NPs对水生生物的毒性影响,以美国红鱼的原代肝细胞为实验对象,通过MTT法和中性红摄取(NRU)法检测细胞存活率,以评估ZnO NPs的细胞毒性;美国红鱼肝细胞经ZnO NPs处理6 h后,检测肝细胞内丙二醛(MDA)含量,并用流式细胞仪检测细胞对ZnO NPs的吞噬、胞内活性氧(ROS)的释放以及细胞凋亡率的变化。结果表明,美国红鱼肝细胞暴露于37.5 μg·mL-1和50 μg·mL-1 ZnO NPs 6 h后,细胞存活率较对照组显著降低,且ZnO NPs的毒性具有浓度和时间依赖性。研究表明,ZnO NPs进入细胞后,细胞内ROS产量增加,引起氧化应激,诱导细胞凋亡。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回