纳米氧化锌对美国红鱼肝细胞的毒性效应及机制
Toxic Effect and Mechanism of Nano-ZnO in Hepatocytes of Sciaenops ocellatus
-
摘要: 纳米氧化锌(ZnO NPs)的广泛应用所引发的环境与健康风险备受关注。为探究ZnO NPs对水生生物的毒性影响,以美国红鱼的原代肝细胞为实验对象,通过MTT法和中性红摄取(NRU)法检测细胞存活率,以评估ZnO NPs的细胞毒性;美国红鱼肝细胞经ZnO NPs处理6 h后,检测肝细胞内丙二醛(MDA)含量,并用流式细胞仪检测细胞对ZnO NPs的吞噬、胞内活性氧(ROS)的释放以及细胞凋亡率的变化。结果表明,美国红鱼肝细胞暴露于37.5 μg·mL-1和50 μg·mL-1 ZnO NPs 6 h后,细胞存活率较对照组显著降低,且ZnO NPs的毒性具有浓度和时间依赖性。研究表明,ZnO NPs进入细胞后,细胞内ROS产量增加,引起氧化应激,诱导细胞凋亡。Abstract: The toxicity of zinc oxide nano particles (ZnO NPs) has received increasing attention in recent years. This experiment was aimed to assess the toxicity effects of ZnO NPs on primary cultured hepatocytes of Sciaenops ocellatus. The in vitro cytotoxicity of ZnO NPs was tested using MTT-fomazan assay and neutral red uptake (NRU) assay. Cellular uptake of ZnO NPs, intracellular reactive oxygen production and apoptosis rate were measured by flow cytometry after exposure to ZnO NPs for 6 h, and the content of malondialdehyde (MDA) were also detected by colorimetry. The results showed that the cell viability decreased after Sciaenops ocellatus hepatocytes were exposed to 37.5 μg·mL-1 and 50 μg·mL-1 ZnO NPs for 6 h. The studies indicated that ZnO NPs inhibited the growth of the hepatocytes of Sciaenops ocellatus in a concentration- and time-dependent manner. It is demonstrated that ZnO NPs induced cells apoptosis, which was mediated by oxidative stress as evidenced by an increase in intracellular ROS and the content of MDA generation.
-
Key words:
- nano zinc oxide /
- Sciaenops ocellatus /
- cytotoxicity /
- oxidative stress /
- flow cytometry
-
-
刘林, 赵群芬, 金凯星, 等. 纳米氧化锌对斑马鱼肝脏的毒性效应[J]. 环境科学, 2015, 36(10):3884-3891 Liu L, Zhao Q F, Jin K X, et al. Toxic effect of nano-ZnO in liver of zebrafish[J]. Environmental Science, 2015, 36(10):3884-3891(in Chinese)
Reed R B, Ladner D A, Higgins C P, et al. Solubility of nano-zinc oxide in environmentally and biologically important matrices[J]. Environmental Toxicology and Chemistry, 2012, 31(1):93-99 Topkaya E, Konyar M, Yatmaz H C, et al. Pure ZnO and composite ZnO/TiO2 catalyst plates:A comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions[J]. Journal of Colloid and Interface Science, 2014, 430:6-11 李曼璐, 姜玥璐. 人工纳米颗粒在水体中的行为及其对浮游植物的影响[J]. 环境科学, 2015, 36(1):365-372 Li M L, Jiang Y L. Behaviors of engineered nanoparticles in aquatic environments and impacts on marine phytoplankton[J]. Environmental Science, 2015, 36(1):365-372(in Chinese)
Yu L P, Fang T, Xiong D W, et al. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation,·OH production and particle dissolution in distilled water[J]. Journal of Environmental Monitoring, 2011, 13(7):1975-1982 Xia T, Zhao Y, Sager T, et al. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos[J]. ACS Nano, 2011, 5(2):1223-1235 Zhao X, Wang S, Wu Y, et al. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish[J]. Aquatic Toxicology, 2013, 136(14):49-59 Xiong D, Fang T, Yu L, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish:Acute toxicity, oxidative stress and oxidative damage[J]. Science of the Total Environment, 2011, 409(8):1444-1452 Li J, Chen Z, Huang R, et al. Toxicity assessment and histopathological analysis of nano-ZnO against marine fish (Mugilogobius chulae) embryos[J]. Journal of Environmental Sciences, 2018, 73(11):78-88 杨皓月, 李丕鹏, 陆宇燕. 环境污染物对脊椎动物甲状腺及甲状腺激素影响的研究现状[J]. 环境化学, 2012, 31(6):823-829 Yang H Y, Li P P, Lu Y Y. Impact of environmental pollutants on vertebrate thyroidsystems[J]. Environmental Chemistry, 2012, 31(6):823-829(in Chinese)
喻文娟, 李聃, 王翔凌, 等. 大口黑鲈原代肝细胞的培养及其应用于CYP450活性的诱导[J]. 海洋渔业, 2008, 30(1):31-36 Yu W J, Li D, Wang X L, et al. Studies of Micropterus salmoides on the culture of primary hepatocytes and on the induction of CYP450 activity[J]. Marine Fisheries, 2008, 30(1):31-36(in Chinese)
张润蔚, 王玲, 张春晓, 等. 过氧化氢诱导斜带石斑鱼原代肝细胞氧化损伤模型的构建[J]. 动物营养学报, 2017(4):144-149 Zhang R W, Wang L, Zhang C X, et al. Establishment of oxidative damage model of primary hepatocytes of grouper (Epinephelus coioides) induced by hydrogen peroxide[J]. Chinese Journal of Animal Nutrition, 2017 (4):144-149(in Chinese)
Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2)[J]. Apoptosis, 2012, 17(8):852-870 刘友平, 丁慧荣, 何涛, 等. 一种简单、经济、高效的大量肝细胞培养方法[J]. 生物学通报, 2005, 40(1):47-48 Liu Y P, Ding H R, He T, et al. A simple, economical and efficient method for culturing a large number of hepatocytes[J] Bulletin of Biology, 2005, 40(1):47-48(in Chinese)
Suzuki H, Toyooka T, Ibuki Y. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis[J]. Environmental Science & Technology, 2007, 41(8):3018-3024 冼健安, 苟妮娜, 陈晓丹, 等. 流式细胞术检测虾类血细胞活性氧含量方法的建立[J]. 海洋科学, 2012, 36(2):29-33 Xian J A, Gou N N, Chen X D, et al. Measurement of reactive oxygen species (ROS) production in shrimp haemocyte by flow cytometry[J]. Marine Sciences, 2012, 36(2):29-33(in Chinese)
Monteiro-Riviere N A, Inman A O, Zhang L W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line[J]. Toxicology and Applied Pharmacology, 2009, 234(2):222-235 Dhawan A, Sharma V. Toxicity assessment of nanomaterials:Methods and challenges[J]. Analytical and Bioanalytical Chemistry, 2010, 398(2):589-605 Jiang Q, Li X, Cheng S, et al. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages[J]. Environmental Toxicology and Pharmacology, 2016, 48:103-109 Wang Y, Aker W G, Hwang H M, et al. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells[J]. Science of the Total Environment, 2011, 409(22):4753-4762 Fern á ndez D, García-Gómez C, Babín M. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells[J]. Science of the Total Environment, 2013, 452-453(5):262-274 Lykkesfeldt J, Svendsen O. Oxidants and antioxidants in disease:Oxidative stress in farm animals[J]. Veterinary Journal, 2014, 173(3):502-511 Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials:The role of particle size, shape and composition[J]. Journal of Applied Toxicology, 2010, 29(1):69-78 Yin H, Casey P S, Mccall M J, et al. Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles[J]. Langmuir, 2010, 26(19):15399-15408 Albairuty G A, Shaw B J, Handy R D, et al. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology, 2013, 126:104-115 De Berardis D, Conti C, Serroni N, et al. The effect of newer serotonin-noradrenalin antidepressants on cytokine production:A review of the current literature[J]. International Journal of Immunopathology and Pharmacology, 2010, 23(2):417-422 Yu K N, Yoon T J, Minai-Tehrani A, et al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation[J]. Toxicology in Vitro, 2013, 27(4):1187-1195 Wahab R, Siddiqui M A, Saquib Q, et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity[J]. Colloids & Surfaces B Biointerfaces, 2014, 117(7):267-276 Rachek L I, Yuzefovych L V, Ledoux S P, et al. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes[J]. Toxicology and Applied Pharmacology, 2009, 240(3):348-354 -

计量
- 文章访问数: 2107
- HTML全文浏览数: 2107
- PDF下载数: 121
- 施引文献: 0