刘林, 赵群芬, 金凯星, 等. 纳米氧化锌对斑马鱼肝脏的毒性效应[J]. 环境科学, 2015, 36(10):3884-3891 Liu L, Zhao Q F, Jin K X, et al. Toxic effect of nano-ZnO in liver of zebrafish[J]. Environmental Science, 2015, 36(10):3884-3891(in Chinese)
Reed R B, Ladner D A, Higgins C P, et al. Solubility of nano-zinc oxide in environmentally and biologically important matrices[J]. Environmental Toxicology and Chemistry, 2012, 31(1):93-99
Topkaya E, Konyar M, Yatmaz H C, et al. Pure ZnO and composite ZnO/TiO2 catalyst plates:A comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions[J]. Journal of Colloid and Interface Science, 2014, 430:6-11
李曼璐, 姜玥璐. 人工纳米颗粒在水体中的行为及其对浮游植物的影响[J]. 环境科学, 2015, 36(1):365-372 Li M L, Jiang Y L. Behaviors of engineered nanoparticles in aquatic environments and impacts on marine phytoplankton[J]. Environmental Science, 2015, 36(1):365-372(in Chinese)
Yu L P, Fang T, Xiong D W, et al. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation,·OH production and particle dissolution in distilled water[J]. Journal of Environmental Monitoring, 2011, 13(7):1975-1982
Xia T, Zhao Y, Sager T, et al. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos[J]. ACS Nano, 2011, 5(2):1223-1235
Zhao X, Wang S, Wu Y, et al. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish[J]. Aquatic Toxicology, 2013, 136(14):49-59
Xiong D, Fang T, Yu L, et al. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish:Acute toxicity, oxidative stress and oxidative damage[J]. Science of the Total Environment, 2011, 409(8):1444-1452
Li J, Chen Z, Huang R, et al. Toxicity assessment and histopathological analysis of nano-ZnO against marine fish (Mugilogobius chulae) embryos[J]. Journal of Environmental Sciences, 2018, 73(11):78-88
杨皓月, 李丕鹏, 陆宇燕. 环境污染物对脊椎动物甲状腺及甲状腺激素影响的研究现状[J]. 环境化学, 2012, 31(6):823-829 Yang H Y, Li P P, Lu Y Y. Impact of environmental pollutants on vertebrate thyroidsystems[J]. Environmental Chemistry, 2012, 31(6):823-829(in Chinese)
喻文娟, 李聃, 王翔凌, 等. 大口黑鲈原代肝细胞的培养及其应用于CYP450活性的诱导[J]. 海洋渔业, 2008, 30(1):31-36 Yu W J, Li D, Wang X L, et al. Studies of Micropterus salmoides on the culture of primary hepatocytes and on the induction of CYP450 activity[J]. Marine Fisheries, 2008, 30(1):31-36(in Chinese)
张润蔚, 王玲, 张春晓, 等. 过氧化氢诱导斜带石斑鱼原代肝细胞氧化损伤模型的构建[J]. 动物营养学报, 2017(4):144-149 Zhang R W, Wang L, Zhang C X, et al. Establishment of oxidative damage model of primary hepatocytes of grouper (Epinephelus coioides) induced by hydrogen peroxide[J]. Chinese Journal of Animal Nutrition, 2017 (4):144-149(in Chinese)
Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2)[J]. Apoptosis, 2012, 17(8):852-870
刘友平, 丁慧荣, 何涛, 等. 一种简单、经济、高效的大量肝细胞培养方法[J]. 生物学通报, 2005, 40(1):47-48 Liu Y P, Ding H R, He T, et al. A simple, economical and efficient method for culturing a large number of hepatocytes[J] Bulletin of Biology, 2005, 40(1):47-48(in Chinese)
Suzuki H, Toyooka T, Ibuki Y. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis[J]. Environmental Science & Technology, 2007, 41(8):3018-3024
冼健安, 苟妮娜, 陈晓丹, 等. 流式细胞术检测虾类血细胞活性氧含量方法的建立[J]. 海洋科学, 2012, 36(2):29-33 Xian J A, Gou N N, Chen X D, et al. Measurement of reactive oxygen species (ROS) production in shrimp haemocyte by flow cytometry[J]. Marine Sciences, 2012, 36(2):29-33(in Chinese)
Monteiro-Riviere N A, Inman A O, Zhang L W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line[J]. Toxicology and Applied Pharmacology, 2009, 234(2):222-235
Dhawan A, Sharma V. Toxicity assessment of nanomaterials:Methods and challenges[J]. Analytical and Bioanalytical Chemistry, 2010, 398(2):589-605
Jiang Q, Li X, Cheng S, et al. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages[J]. Environmental Toxicology and Pharmacology, 2016, 48:103-109
Wang Y, Aker W G, Hwang H M, et al. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells[J]. Science of the Total Environment, 2011, 409(22):4753-4762
Fern á ndez D, García-Gómez C, Babín M. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells[J]. Science of the Total Environment, 2013, 452-453(5):262-274
Lykkesfeldt J, Svendsen O. Oxidants and antioxidants in disease:Oxidative stress in farm animals[J]. Veterinary Journal, 2014, 173(3):502-511
Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials:The role of particle size, shape and composition[J]. Journal of Applied Toxicology, 2010, 29(1):69-78
Yin H, Casey P S, Mccall M J, et al. Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles[J]. Langmuir, 2010, 26(19):15399-15408
Albairuty G A, Shaw B J, Handy R D, et al. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology, 2013, 126:104-115
De Berardis D, Conti C, Serroni N, et al. The effect of newer serotonin-noradrenalin antidepressants on cytokine production:A review of the current literature[J]. International Journal of Immunopathology and Pharmacology, 2010, 23(2):417-422
Yu K N, Yoon T J, Minai-Tehrani A, et al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation[J]. Toxicology in Vitro, 2013, 27(4):1187-1195
Wahab R, Siddiqui M A, Saquib Q, et al. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity[J]. Colloids & Surfaces B Biointerfaces, 2014, 117(7):267-276
Rachek L I, Yuzefovych L V, Ledoux S P, et al. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes[J]. Toxicology and Applied Pharmacology, 2009, 240(3):348-354