-
水环境中的重金属因其较高的毒性和不可被生物降解性而被认为是主要的金属污染物[1]。人类活动(工业、农业)生产了大量的重金属,通过水循环和大气沉降进入到水体当中,易被固体颗粒物吸附,经沉降作用在沉积物中富集,当沉积物环境因子改变或受到扰动时重新释放到上覆水[2]。由于食物链作用,重金属的毒性使人们增加了患病的风险[3-5]。重金属污染日趋严重,世界各地政府部门为此采取了多种应对措施,美国环境保护局(U.S Environmental Protection Agency,US EPA)将沉积物重金属监测作为水环境评价的重要内容,我国于2002年颁布了《海洋沉积物质量标准:GB 18688—2002》。已有研究表明,重金属赋存形态的不同会导致理化特性的差异,继而影响其本身的迁移转化过程,同时也对其生物可利用性和潜在的生物毒性产生重要的影响[6-9]。
随着人们对环境问题的重视程度逐步提高,沉积物重金属污染研究日益成为研究的热点。重金属污染评价和迁移转化机理研究相对较多,但无论是何种研究方向,都需要对重金属监测工作作为其研究基础。传统形态分析方法如Tessier连续提取法和BCR连续提取法[10-13],原位分析方法如薄膜扩散梯度技术(Diffusive Gradients In Thin-Films Technique,DGT)[14-15]等相继被提出,并在具体研究工作中得到了实际应用。
沉积物生物有效态重金属测定分析研究进展
Determination and analysis of bioavailable heavy metals in sediments
-
摘要: 基于国内外相关文献研究,文章回溯了沉积物重金属测定分析技术历史进展,将各种采样技术做了简要的概述,分析了各项技术的优缺点,提出薄膜扩散梯度技术(DGT)更适合沉积物重金属生物有效态的原位监测。文章还阐述了DGT主要分析方法供相关研究人员参考。对未来DGT技术的发展和分析方法的创新提出展望。DGT基于吸附动力学原理能较好地模拟生物的吸收过程,同时利用DGT技术对沉积物-水界面(SWI)进行二维高分辨率研究有助于进一步探究重金属迁移转化的影响机制,为沉积物重金属污染防治及水环境保护提供技术支持。Abstract: Based on the research of relevant literature at home and abroad, this paper traces the historical progress on determination and analysis technology of heavy metals in sediment, briefly summarizes various sampling technologies, analyzes the advantages and disadvantages of each technology. It is pointed out that the diffusive gradients in thin-films technique (DGT) is more suitable for in-situ measurement of bioavailable heavy metals in sediments. The main analysis methods of DGT are also described in this paper for researchers on the related field. The development of DGT technology and the innovation of analysis methods in the future are prospected. DGT can simulate the biosorption process based on the principle of adsorption kinetics. And the two-dimensional high-resolution study of the sediment-water interface (SWI) using DGT is helpful to further explore the mechanism of heavy metal transport and transformation, provides the technical support for the prevention and control of heavy metal pollution in sediments and water environment protection.
-
Key words:
- sediment /
- heavy metal /
- bioavailable /
- DGT /
- in-situ measurement
-
[1] MISHRA S P. Adsorption–desorption of heavy metal ions[J]. Current Science, 2014, 107(4): 601 − 612. [2] 赵艳民, 秦延文, 曹伟, 等. 洞庭湖表层沉积物重金属赋存形态及生态风险评价[J]. 环境科学研究, 2020, 33(3): 572 − 580. doi: 10.13198/j.issn.1001-6929.2019.07.28 [3] PAITHANKAR J G, SAINI S, DWIVEDI S, et al. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction[J]. Chemosphere, 2020, 262: 128350. [4] CHEN C F, JU Y R, CHEN C W, et al. Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan[J]. Chemosphere, 2016, 165: 67 − 79. doi: 10.1016/j.chemosphere.2016.09.019 [5] 郑家传, 王刚. 城市地表水重金属污染特征及风险评价——以苏州市为例[J]. 环境保护科学, 2022, 48(1): 25 − 32. [6] SIRASWAR R, NAYAK G N, D’MELLO C N. Metals bioavailability and toxicity in sediments of the main channel and subchannel of a tropical (Mandovi) estuary, Goa, India[J]. Arabian Journal of Geosciences, 2021, 14(11): 1 − 12. [7] RAMTEKE D, CHAKRABORTY P, CHENNURI K, et al. Geochemical fractionation study in combination with equilibrium based chemical speciation modelling of Cd in finer sediments provide a better description of Cd bioavailability in tropical estuarine systems[J]. Science of the Total Environment, 2021, 764: 143798. doi: 10.1016/j.scitotenv.2020.143798 [8] HAO Y, MIAO X, LIU H, et al. The Variation of heavy metals bioavailability in sediments of Liujiang River Basin, SW China associated to their speciations and environmental fluctuations, a field study in Typical Karstic River[J]. International Journal of Environmental Research and Public Health, 2021, 18(8): 3986. doi: 10.3390/ijerph18083986 [9] 唐文忠, 王立硕, 单保庆, 等. 典型城市河流(凉水河)表层沉积物中重金属赋存形态特征[J]. 环境科学学报, 2015, 35(12): 3898 − 3905. doi: 10.13671/j.hjkxxb.2015.0021 [10] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844 − 851. doi: 10.1021/ac50043a017 [11] MESTER Z, CREMISINI C, GHIARA E, et al. Comparison of two sequential extraction procedures for metal fractionation in sediment samples[J]. Analytica Chimica Acta, 1998, 359(1-2): 133 − 142. doi: 10.1016/S0003-2670(97)00687-9 [12] DAVIDSON C M, THOMAS R P, MCVEY S E, et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments[J]. Analytica Chimica Acta, 1994, 291(3): 277 − 286. doi: 10.1016/0003-2670(94)80023-5 [13] RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57 − 61. doi: 10.1039/a807854h [14] DE SOUZA J M, MENEGÁRIO A A, DE ARAÚJO JÚNIOR M A G, et al. Measurements of labile Cd, Cu, Ni, Pb, and Zn levels at a northeastern Brazilian coastal area under the influence of oil production with diffusive gradients in thin films technique (DGT)[J]. Science of the Total Environment, 2014, 500: 325 − 331. [15] DAVISON W, ZHANG H. In situ speciation measurements of trace components in natural waters using thin-film gels[J]. Nature, 1994, 367(6463): 546 − 548. doi: 10.1038/367546a0 [16] 孙晓艳, 罗立强. 重金属生物有效性在矿山环境评价中应用研究进展[J]. 矿产保护与利用, 2019, 39(1): 100 − 108. doi: 10.13779/j.cnki.issn1001-0076.2019.01.020 [17] 张志, 张润宇, 王立英, 等. 淡水沉积物中重金属生物有效性的研究进展[J]. 地球与环境, 2020, 48(3): 385 − 394. [18] 黄迪, 杨燕群, 肖选虎, 等. 土壤重金属生物有效性评价技术进展[J]. 现代化工, 2019, 39(S1): 89 − 94+98. [19] 邓瑜衡, 赵军. 沉积物中重金属的迁移转化影响机制研究[J]. 环境工程, 2017, 35(4): 179 − 182. [20] MENZIES N W, DONN M J, KOPITTKE P M. Evaluation of extractants for estimation of the phytoavailable trace metals in soils[J]. Environmental Pollution, 2007, 145(1): 121 − 130. doi: 10.1016/j.envpol.2006.03.021 [21] LI C, DING S, YANG L, et al. Diffusive gradients in thin films: devices, materials and applications[J]. Environmental Chemistry Letters, 2019, 17(2): 801 − 831. doi: 10.1007/s10311-018-00839-9 [22] GAO L, GAO B, XU D, et al. DGT: A promising technology for in-situ measurement of metal speciation in the environment[J]. Science of the Total Environment, 2020, 715: 136810. doi: 10.1016/j.scitotenv.2020.136810 [23] HESSLEIN R H. An in situ sampler for close interval pore water studies[J]. Limnology and Oceanography, 1976, 21(6): 912 − 914. doi: 10.4319/lo.1976.21.6.0912 [24] AZCUE J M, ROSA F, LAWSON G. An improved dialysis sampler for the in situ collection of larger volumes of sediment pore waters[J]. Environmental Technology, 1996, 17(1): 95 − 100. doi: 10.1080/09593331708616365 [25] XU D, WU W, DING S, et al. A high-resolution dialysis technique for rapid determination of dissolved reactive phosphate and ferrous iron in pore water of sediments[J]. Science of the Total Environment, 2012, 421: 245 − 252. [26] ZHANG H, DAVISON W. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution[J]. Analytical Chemistry, 1995, 67(19): 3391 − 3400. doi: 10.1021/ac00115a005 [27] WANG Y, DING S, REN M, et al. Enhanced DGT capability for measurements of multiple types of analytes using synergistic effects among different binding agents[J]. Science of the Total Environment, 2019, 657: 446 − 456. doi: 10.1016/j.scitotenv.2018.12.016 [28] PELCOVÁ P, ZOUHAROVÁ I, RIDOŠKOVÁ A, et al. Evaluation of mercury availability to pea parts (Pisum sativum L. ) in urban soils: Comparison between diffusive gradients in thin films technique and plant model[J]. Chemosphere, 2019, 234: 373 − 378. doi: 10.1016/j.chemosphere.2019.06.076 [29] AMATO E D, WADIGE C P M M, TAYLOR A M, et al. Field and laboratory evaluation of DGT for predicting metal bioaccumulation and toxicity in the freshwater bivalve Hyridella australis exposed to contaminated sediments[J]. Environmental Pollution, 2018, 243: 862 − 871. doi: 10.1016/j.envpol.2018.09.004 [30] 孔明, 董增林, 晁建颖, 等. 巢湖表层沉积物重金属生物有效性与生态风险评价[J]. 中国环境科学, 2015, 35(4): 1223 − 1229. [31] MENEGÁRIO A A, YABUKI L N M, LUKO K S, et al. Use of diffusive gradient in thin films for in situ measurements: A review on the progress in chemical fractionation, speciation and bioavailability of metals in waters[J]. Analytica Chimica Acta, 2017, 983: 54 − 66. doi: 10.1016/j.aca.2017.06.041 [32] TEASDALE P R, BATLEY G E, APTE S C, et al. Pore water sampling with sediment peepers[J]. TrAC Trends in Analytical Chemistry, 1995, 14(6): 250 − 256. doi: 10.1016/0165-9936(95)91617-2 [33] LIU L, TANG W, HUANG J, et al. In situ, high-resolution measurement of labile phosphate in sediment porewater using the DET technique coupled with optimized imaging densitometry[J]. Environmental Research, 2020, 191: 11010. [34] KANKANAMGE N R, BENNETT W W, TEASDALE P R, et al. A new colorimetric DET technique for determining mm-resolution sulfide porewater distributions and allowing improved interpretation of iron (II) co-distributions[J]. Chemosphere, 2019, 244: 125388. [35] 范洪涛, 孙挺, 隋殿鹏, 等. 环境监测中两种原位被动采样技术——薄膜扩散平衡技术和薄膜扩散梯度技术[J]. 化学通报, 2009, 72(5): 421 − 426. [36] 范洪涛, 隋殿鹏, 陈宏, 等. 原位被动采样技术[J]. 化学进展, 2010, 22(8): 1672 − 1678. [37] 李财, 任明漪, 石丹, 等. 薄膜扩散梯度(DGT)——技术进展及展望[J]. 农业环境科学学报, 2018, 37(12): 2613 − 2628. doi: 10.11654/jaes.2018-1403 [38] 罗军, 王晓蓉, 张昊, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用I: 工作原理、特性与在土壤中的应用[J]. 农业环境科学学报, 2011, 30(2): 205 − 213. [39] 翁泓生, 黑亮, 余顺超, 等. 梯度扩散薄膜技术在沉积物中重金属的应用进展[J]. 环境科学与技术, 2020, 43(12): 55 − 62. doi: 10.19672/j.cnki.1003-6504.2020.12.008 [40] 张婷, 刘爽, 管鹏, 等. 薄膜扩散梯度技术在重金属生物有效态监测中的应用[J]. 中国环境监测, 2019, 35(2): 117 − 128. doi: 10.19316/j.issn.1002-6002.2019.02.16 [41] SHUTTLEWORTH S M, DAVISON W, HAMILTON-TAYLOR J. Two-dimensional and fine structure in the concentrations of iron and manganese in sediment pore-waters[J]. Environmental Science & Technology, 1999, 33(23): 4169 − 4175. [42] 房煦, 罗军, 高悦, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅱ: 土壤与沉积物原位高分辨分析中的方法与应用[J]. 农业环境科学学报, 2017, 36(9): 1693 − 1702. doi: 10.11654/jaes.2017-0454 [43] DING S, WANG Y, XU D, et al. Gel-based coloration technique for the submillimeter-scale imaging of labile phosphorus in sediments and soils with diffusive gradients in thin films[J]. Environmental Science & Technology, 2013, 47(14): 7821 − 7829. [44] TEASDALE P R, HAYWARD S, DAVISON W. In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry[J]. Analytical Chemistry, 1999, 71(11): 2186 − 2191. doi: 10.1021/ac981329u [45] MCGIFFORD R W, SEEN A J, HADDAD P R. Direct colorimetric detection of copper (II) ions in sampling using diffusive gradients in thin-films[J]. Analytica Chimica Acta, 2010, 662(1): 44 − 50. doi: 10.1016/j.aca.2009.12.041 [46] DING S, HAN C, WANG Y, et al. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake[J]. Water Research, 2015, 74: 100 − 109. doi: 10.1016/j.watres.2015.02.008 [47] YAO Y, WANG C, WANG P, et al. Zr oxide-based coloration technique for two-dimensional imaging of labile Cr (VI) using diffusive gradients in thin films[J]. Science of the Total Environment, 2016, 566: 1632 − 1639. [48] 田晓莉. 激光烧蚀电感耦合等离子体质谱分析金属/类金属元素的方法研究[D]. 郑州: 郑州大学, 2017. [49] BECKER J S, MATUSCH A, WU B. Bioimaging mass spectrometry of trace elements–recent advance and applications of LA-ICP-MS: A review[J]. Analytica Chimica Acta, 2014, 835: 1 − 18. doi: 10.1016/j.aca.2014.04.048 [50] 谭靖, 郭冬发, 张彦辉, 等. 激光烧蚀光谱-电感耦合等离子体质谱联用技术在地质分析中的应用[J]. 质谱学报, 2012, 33(4): 212 − 218. [51] GRAY A L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry[J]. Analyst, 1985, 110(5): 551 − 556. doi: 10.1039/an9851000551 [52] MOTELICA-HEINO M, NAYLOR C, ZHANG H, et al. Simultaneous release of metals and sulfide in lacustrine sediment[J]. Environmental Science & Technology, 2003, 37(19): 4374 − 4381. [53] 刘娅聪, 王伟超, 令伟博, 等. 激光剥蚀串联电感耦合等离子体质谱在环境分析中的应用进展[J]. 分析测试学报, 2021, 40(5): 767 − 776. doi: 10.3969/j.issn.1004-4957.2021.05.021 [54] 魏天娇, 管冬兴, 方文, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅲ——植物有效性评价的理论基础与应用潜力[J]. 农业环境科学学报, 2018, 37(5): 841 − 849. doi: 10.11654/jaes.2018-0341 [55] 谢发之, 胡婷婷, 付浩瀚, 等. 碱式碳酸镁为新结合相的薄膜梯度扩散技术原位富集测定富营养水体中的磷[J]. 分析化学, 2016, 44(6): 965 − 969. doi: 10.11895/j.issn.0253-3820.150839 [56] MASON S, HAMON R, NOLAN A, et al. Performance of a mixed binding layer for measuring anions and cations in a single assay using the diffusive gradients in thin films technique[J]. Analytical Chemistry, 2005, 77(19): 6339 − 6346. doi: 10.1021/ac0507183 [57] HOEFER C, SANTNER J, BORISOV S M, et al. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer[J]. Analytica Chimica Acta, 2017, 950: 88 − 97. doi: 10.1016/j.aca.2016.11.004
计量
- 文章访问数: 2905
- HTML全文浏览数: 2905
- PDF下载数: 30
- 施引文献: 0