-
药品和个人护理用品(pharmaceuticals and personal care products,PPCPs)最早由DAUGHTON et al[1]在1999年发表的一篇综述文章中提出,而后PPCPs被研究人员普遍认知和熟悉。PPCPs是一类日常生活中大量生产、使用、具有较强生物活性的“新型污染物”,包括人用、兽用的各种药品以及个人护理品等。在过去10多年中,PPCPs在人们日常生活中使用的频率和使用量不断增加。PPCPs由于生产量大,使用面广,生物活性和组成较为复杂,且具有排放面广、持久性强以及生物积累性,对生态环境和人类健康带来巨大的风险和潜在危害,现已引起全世界的广泛关注。PPCPs普遍存在于自然水体环境中,在水体中的含量水平在ng/L~μg/L之间[2],即使其含量处于很低水平时也会显示出很强的生态毒性[3]。传统的水处理工艺很难完全去除水体中的PPCPs。目前,在城市污水厂出水中能检测的抗生素有头孢氨苄、环丙沙星等[4],使得城市污水处理厂的出水排放成为PPCPs向环境迁移的重要途径,进一步污染地表水体和地下水体,导致PPCPs在水环境中普遍存在[5],如磺胺类抗生素磺胺甲恶唑就已经在越南和中国的地表水及美国和德国的地下水中被检测出来[6-9]。如何去除水环境中的PPCPs已成为亟待解决的问题[10]。虽然,现有的臭氧氧化、芬顿氧化及膜处理等水处理技术在一定程度上对PPCPs有一定去除效果,但由于处理成本高及产生副产物等原因限制了这些技术在实际水处理中的应用。
光催化技术作为一种高级氧化技术在去除难降解有机物方面具有良好的实际应用价值,受到越来越多研究人员的关注,被广泛用于降解水中有机污染物的研究中[11]。该技术主要是通过半导体纳米材料与污染物直接接触,利用光能触发半导体材料的催化或转化效应,将污染物降解、矿化,其主要具有以下优点:1)光催化体系氧化还原能力较强,几乎对所有有机污染物均有降解、矿化的作用;2)光催化体系的反应条件比较温和易控制,在常温常压下就可操作;3)光催化体系除了太阳光,不需要额外能源,可降低反应能耗,节约成本;4)光催化材料多数为环境友好型材料,对周围环境无污染。在光催化技术中,半导体材料是其关键和核心,目前光催化半导体材料从组成材料上大体分为两类:金属半导体材料(如TiO2、ZnO、CdS、BiOBr和Ag3PO4等)和非金属半导体材料(如g-C3N4)。然而,这些半导体材料存在光量子产率低、光生电子-空穴对复合率高和可见光利用率低等弊端。本研究针对这些半导体材料存在的问题,在对其特性进行梳理后,提出了通过金属离子掺杂、功能材料负载、表面贵金属沉积和半导体复合等手段进而提升光催化材料的光催化性能,以期为突破光化学催化材料的技术限制提供参考。
光催化半导体材料在降解水中PPCPs的应用
Application of photocatalytic semiconductor materials in degradation of PPCPs in water
-
摘要: 随着人们在日常生活中使用药品和个人护理品(PPCPs)的增加,导致水环境中PPCPs污染日趋严重,这对人类健康和生态环境构成巨大威胁。光催化技术具有效率高、寿命长、维护简单和运行能耗低等优点,在处理PPCPs污染方面已经显示出巨大潜力。文章主要从光催化半导体材料的物理性质上分为金属半导体材料和非金属半导体材料两类进行综述,针对这些半导体材料存在的问题,提出了通过金属离子掺杂、功能材料负载、表面贵金属沉积和半导体复合等改性手段来提升其光催化性能。Abstract: With the increase in daily use of pharmaceuticals and personal care products (PPCPs), the pollution of PPCPs in the water environment is increasingly serious with a great threat to both human health and the ecological environment. Photocatalytic technology has shown a great potential in the treatment of PPCPs pollution based on its advantages of high efficiency, long life, simple maintenance, and low operating energy consumption. This paper mainly reviews the physical properties of photocatalytic semiconductor materials, which can be divided into two categories, metallic semiconductor materials and non-metallic semiconductor materials. In view of the problems of these semiconductor materials, modification methods such as metal ion doping, functional material loading, surface noble metal deposition, and semiconductor compounding have been proposed to improve their photocatalytic performance.
-
[1] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(6): 907 − 938. [2] KUMAR R, AKBARINEJAD A, JASEMIZAD T, et al. The removal of metformin and other selected PPCPs from water by poly(3, 4-ethylenedioxythiophene) photocatalyst[J]. Science of the Total Environment, 2020, 751: 142303. [3] OLIVEIRA M D, FRIHLING B E F, VELASQUES J, et al. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment[J]. Science of the Total Environment, 2019, 705: 135568. [4] TAMURA I, YASUDA Y, KAGOTA KI, et al. Contribution of pharmaceuticals and personal care products (PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams[J]. Ecotoxicology & Environmental Safety, 2017, 144: 338 − 350. [5] 赵青青, 高睿, 王铭璐, 等. 药物和个人护理品(PPCPs)去除技术研究进展[J]. 环境科学与技术, 2016, 39(增1): 119 − 125. [6] HOA P T P, MANAGAKI S, NAKADA N, et al. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam[J]. Science of the Total Environment, 2011, 409(15): 2894 − 2901. doi: 10.1016/j.scitotenv.2011.04.030 [7] 阮悦斐, 陈继淼, 郭昌胜, 等. 天津近郊地区淡水养殖水体的表层水及沉积物中典型抗生素的残留分析[J]. 农业环境科学学报, 2011, 30(12): 2586 − 2593. [8] LINDSEY M E, MEYER M, THURMAN E. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry[J]. Analytical Chemistry, 2001, 73(19): 4640 − 4646. doi: 10.1021/ac010514w [9] HIRSCH R, TERNES T, HABERER K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1): 109 − 118. [10] PIETROGRANDE M C, BASAGLIA G. GC-MS analytical methods for the determination of personal-care products in water matrices[J]. Trac Trends in Analytical Chemistry, 2007, 26(11): 1086 − 1094. doi: 10.1016/j.trac.2007.09.013 [11] 李娟, 吴梁鹏, 王楠, 等. 光催化应用于环境治理和光化学合成的研究进展[J]. 新能源进展, 2019, 7(1): 32 − 39. [12] 陈昱, 王京钰, 李维尊, 等. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程, 2016, 44(3): 103 − 113. doi: 10.11868/j.issn.1001-4381.2016.03.017 [13] ZHANG Q, YU L, XU C, et al. A novel method for facile preparation of recoverable Fe3O4@TiO2 core-shell nanospheres and their advanced photocatalytic application[J]. Chemical Physics Letters, 2020, 761: 138073. doi: 10.1016/j.cplett.2020.138073 [14] 郭俊, 余晨露, 赵辰, 等. 纳米硅银复合颗粒对二氧化钛可见光光催化性能的影响[J]. 化工新型材料, 2020, 13(43): 1 − 13. [15] 徐志兵, 张鹏飞, 刘念, 等. TiO2/ZnO复合微球的制备及其光催化性能研究[J]. 人工晶体学报, 2020, 49(1): 50 − 55. [16] 刘阳思, 席晓丽. 用于环境光催化的固载型ZnO纳米结构的研究进展[J]. 中国材料进展, 2019, 38(4): 375 − 383. [17] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129 − 137. [18] LIU Q, ZHOU L, LIU L, et al. Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol[J]. Composites Part B: Engineering, 2020, 200: 108345. doi: 10.1016/j.compositesb.2020.108345 [19] 郭慧, 刘方华, 付翔, 等. 水热法制备Mn掺杂ZnO及其光催化性能研究[J]. 人工晶体学报, 2020, 49(9): 1699 − 1704. [20] 黄凤萍, 李春花, 辛萌, 等. Ag2CrO4/ZnO复合光催化剂的制备及光催化性能研究[J]. 化工新型材料, 2020, 48(9): 105 − 110. [21] 张克杰, 李宇, 夏源, 等. 核壳结构CdS/CuS纳米复合材料的制备及光催化性能[J]. 高等学校化学学报, 2019, 40(3): 489 − 497. [22] 赵瑞, 张天宇, 李莹, 等. CdS基半导体纳米材料光催化研究进展[J]. 吉林师范大学学报(自然科学版), 2019, 40(4): 7 − 12. [23] 余明远, 王璐, 曲雯雯, 等. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602 − 1608. [24] 武军伟, 朱留东, 胡兰青. CNT-CdS-TiO2光催化剂的制备及其光催化性能[J]. 材料科学与工程学报, 2018, 36(1): 72 − 76. [25] YANG X, BAI X, MA Y, et al. A solar light regenerated adsorbent by implanting CdS into an active covalent triazine framework to decontaminate tetracycline[J]. Separation and Purification Technology, 2020, 255: 117696. [26] 丁星, 杨祥龙, 熊中亮, 等. 铋系光催化剂去除环境污染物[J]. 化学进展, 2017, 29(9): 1115 − 1126. [27] 朱培娟, 陈薇, 李春艳, 等. 溴化氧铋(BiOBr)光催化降解亚甲基蓝的研究[J]. 华东师范大学学报(自然科学版), 2014(4): 122 − 131. [28] LI S, WANG Z, ZHAO X, et al. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation[J]. Chemical Engineering Journal, 2019, 360: 600 − 611. doi: 10.1016/j.cej.2018.12.002 [29] 卢朋辉, 罗秀珍, 谭明月, 等. Bi2S3@BiOBr的原位合成及其可见光催化性能[J]. 功能材料, 2019, 50(11): 11075 − 11078. doi: 10.3969/j.issn.1001-9731.2019.11.012 [30] 唐新德, 王正容, 刘宁. Bi2O2CO3/BiOBr异质结的制备及其可见光降解盐酸四环素的研究[J]. 现代化工, 2019, 39(11): 137 − 140. [31] 于红超, 杜俊杰, 张梦萌, 等. Ag3PO4光催化剂的合成与再生[J]. 兵器材料科学与工程, 2020, 43(5): 71 − 76. [32] 阎鑫, 惠小艳, 高强, 等. Ag3PO4/MoS2纳米片复合催化剂制备及可见光催化性能[J]. 无机化学学报, 2017, 33(10): 1782 − 1788. doi: 10.11862/CJIC.2017.212 [33] NA G, LI H Y, XU X J, et al. Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation[J]. Applied Surface Science, 2016, 389: 227 − 239. doi: 10.1016/j.apsusc.2016.07.099 [34] CHEN F, LI S, CHEN Q, et al. Construction of rGO/Fe3O4/Ag3PO4 multifunctional composite as recyclable adsorbent and photocatalysts towards the mixture of dyes in water under visible light irradiation[J]. Materials Letters, 2016, 185: 561 − 564. doi: 10.1016/j.matlet.2016.09.061 [35] 张晓君, 李佳乐, 刘一儒, 等. 固相研磨法制备AgI/Ag3PO4复合光催化剂及其光催化性能[J]. 化工进展, 2019, 38(2): 892 − 898. [36] THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893 − 4908. doi: 10.1039/b800274f [37] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental Rremediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159 − 7329. doi: 10.1021/acs.chemrev.6b00075 [38] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271: 53 − 55. doi: 10.1126/science.271.5245.53 [39] 宋亚丽. g-C3N4基可见光催化剂降解水中典型磺胺类抗生素的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [40] KROKE E, SEHWARZ M, KROLL P, et al. Tri-s-triazine derivatives. Part I. From Trichloro-Tri-s-Triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002, 26: 508 − 512. doi: 10.1039/b111062b [41] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visiblelight[J]. Nature Materials, 2009, 8: 76 − 80. doi: 10.1038/nmat2317 [42] NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22: 4763 − 4770. doi: 10.1002/adfm.201200922 [43] DENG D, NOVOSELOV K S, FU Q, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11(3): 218. doi: 10.1038/nnano.2015.340 [44] DING N, ZHANG L S, HASHIMOTO M, et al. Enhanced photocatalytic activity of mesoporous carbon/C3N4 composite photocatalysts[J]. Journal of Colloid and Interface Science, 2018, 512: 474 − 479. doi: 10.1016/j.jcis.2017.10.081 [45] MA S S, SONG Y P, XU P, et al. Facile one-step synthesis of Cu(1.96)S/g-C3N4 0D/2D p-n heterojunctions with enhanced visible light photoactivity toward ciprofloxacin degradation[J]. Materials Letters, 2018, 213: 370 − 373. doi: 10.1016/j.matlet.2017.11.026