[1] |
DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(6): 907 − 938.
|
[2] |
KUMAR R, AKBARINEJAD A, JASEMIZAD T, et al. The removal of metformin and other selected PPCPs from water by poly(3, 4-ethylenedioxythiophene) photocatalyst[J]. Science of the Total Environment, 2020, 751: 142303.
|
[3] |
OLIVEIRA M D, FRIHLING B E F, VELASQUES J, et al. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment[J]. Science of the Total Environment, 2019, 705: 135568.
|
[4] |
TAMURA I, YASUDA Y, KAGOTA KI, et al. Contribution of pharmaceuticals and personal care products (PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams[J]. Ecotoxicology & Environmental Safety, 2017, 144: 338 − 350.
|
[5] |
赵青青, 高睿, 王铭璐, 等. 药物和个人护理品(PPCPs)去除技术研究进展[J]. 环境科学与技术, 2016, 39(增1): 119 − 125.
|
[6] |
HOA P T P, MANAGAKI S, NAKADA N, et al. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam[J]. Science of the Total Environment, 2011, 409(15): 2894 − 2901. doi: 10.1016/j.scitotenv.2011.04.030
|
[7] |
阮悦斐, 陈继淼, 郭昌胜, 等. 天津近郊地区淡水养殖水体的表层水及沉积物中典型抗生素的残留分析[J]. 农业环境科学学报, 2011, 30(12): 2586 − 2593.
|
[8] |
LINDSEY M E, MEYER M, THURMAN E. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry[J]. Analytical Chemistry, 2001, 73(19): 4640 − 4646. doi: 10.1021/ac010514w
|
[9] |
HIRSCH R, TERNES T, HABERER K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1): 109 − 118.
|
[10] |
PIETROGRANDE M C, BASAGLIA G. GC-MS analytical methods for the determination of personal-care products in water matrices[J]. Trac Trends in Analytical Chemistry, 2007, 26(11): 1086 − 1094. doi: 10.1016/j.trac.2007.09.013
|
[11] |
李娟, 吴梁鹏, 王楠, 等. 光催化应用于环境治理和光化学合成的研究进展[J]. 新能源进展, 2019, 7(1): 32 − 39.
|
[12] |
陈昱, 王京钰, 李维尊, 等. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程, 2016, 44(3): 103 − 113. doi: 10.11868/j.issn.1001-4381.2016.03.017
|
[13] |
ZHANG Q, YU L, XU C, et al. A novel method for facile preparation of recoverable Fe3O4@TiO2 core-shell nanospheres and their advanced photocatalytic application[J]. Chemical Physics Letters, 2020, 761: 138073. doi: 10.1016/j.cplett.2020.138073
|
[14] |
郭俊, 余晨露, 赵辰, 等. 纳米硅银复合颗粒对二氧化钛可见光光催化性能的影响[J]. 化工新型材料, 2020, 13(43): 1 − 13.
|
[15] |
徐志兵, 张鹏飞, 刘念, 等. TiO2/ZnO复合微球的制备及其光催化性能研究[J]. 人工晶体学报, 2020, 49(1): 50 − 55.
|
[16] |
刘阳思, 席晓丽. 用于环境光催化的固载型ZnO纳米结构的研究进展[J]. 中国材料进展, 2019, 38(4): 375 − 383.
|
[17] |
赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129 − 137.
|
[18] |
LIU Q, ZHOU L, LIU L, et al. Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol[J]. Composites Part B: Engineering, 2020, 200: 108345. doi: 10.1016/j.compositesb.2020.108345
|
[19] |
郭慧, 刘方华, 付翔, 等. 水热法制备Mn掺杂ZnO及其光催化性能研究[J]. 人工晶体学报, 2020, 49(9): 1699 − 1704.
|
[20] |
黄凤萍, 李春花, 辛萌, 等. Ag2CrO4/ZnO复合光催化剂的制备及光催化性能研究[J]. 化工新型材料, 2020, 48(9): 105 − 110.
|
[21] |
张克杰, 李宇, 夏源, 等. 核壳结构CdS/CuS纳米复合材料的制备及光催化性能[J]. 高等学校化学学报, 2019, 40(3): 489 − 497.
|
[22] |
赵瑞, 张天宇, 李莹, 等. CdS基半导体纳米材料光催化研究进展[J]. 吉林师范大学学报(自然科学版), 2019, 40(4): 7 − 12.
|
[23] |
余明远, 王璐, 曲雯雯, 等. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602 − 1608.
|
[24] |
武军伟, 朱留东, 胡兰青. CNT-CdS-TiO2光催化剂的制备及其光催化性能[J]. 材料科学与工程学报, 2018, 36(1): 72 − 76.
|
[25] |
YANG X, BAI X, MA Y, et al. A solar light regenerated adsorbent by implanting CdS into an active covalent triazine framework to decontaminate tetracycline[J]. Separation and Purification Technology, 2020, 255: 117696.
|
[26] |
丁星, 杨祥龙, 熊中亮, 等. 铋系光催化剂去除环境污染物[J]. 化学进展, 2017, 29(9): 1115 − 1126.
|
[27] |
朱培娟, 陈薇, 李春艳, 等. 溴化氧铋(BiOBr)光催化降解亚甲基蓝的研究[J]. 华东师范大学学报(自然科学版), 2014(4): 122 − 131.
|
[28] |
LI S, WANG Z, ZHAO X, et al. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation[J]. Chemical Engineering Journal, 2019, 360: 600 − 611. doi: 10.1016/j.cej.2018.12.002
|
[29] |
卢朋辉, 罗秀珍, 谭明月, 等. Bi2S3@BiOBr的原位合成及其可见光催化性能[J]. 功能材料, 2019, 50(11): 11075 − 11078. doi: 10.3969/j.issn.1001-9731.2019.11.012
|
[30] |
唐新德, 王正容, 刘宁. Bi2O2CO3/BiOBr异质结的制备及其可见光降解盐酸四环素的研究[J]. 现代化工, 2019, 39(11): 137 − 140.
|
[31] |
于红超, 杜俊杰, 张梦萌, 等. Ag3PO4光催化剂的合成与再生[J]. 兵器材料科学与工程, 2020, 43(5): 71 − 76.
|
[32] |
阎鑫, 惠小艳, 高强, 等. Ag3PO4/MoS2纳米片复合催化剂制备及可见光催化性能[J]. 无机化学学报, 2017, 33(10): 1782 − 1788. doi: 10.11862/CJIC.2017.212
|
[33] |
NA G, LI H Y, XU X J, et al. Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation[J]. Applied Surface Science, 2016, 389: 227 − 239. doi: 10.1016/j.apsusc.2016.07.099
|
[34] |
CHEN F, LI S, CHEN Q, et al. Construction of rGO/Fe3O4/Ag3PO4 multifunctional composite as recyclable adsorbent and photocatalysts towards the mixture of dyes in water under visible light irradiation[J]. Materials Letters, 2016, 185: 561 − 564. doi: 10.1016/j.matlet.2016.09.061
|
[35] |
张晓君, 李佳乐, 刘一儒, 等. 固相研磨法制备AgI/Ag3PO4复合光催化剂及其光催化性能[J]. 化工进展, 2019, 38(2): 892 − 898.
|
[36] |
THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18(41): 4893 − 4908. doi: 10.1039/b800274f
|
[37] |
ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental Rremediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159 − 7329. doi: 10.1021/acs.chemrev.6b00075
|
[38] |
TETER D M, HEMLEY R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271: 53 − 55. doi: 10.1126/science.271.5245.53
|
[39] |
宋亚丽. g-C3N4基可见光催化剂降解水中典型磺胺类抗生素的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
[40] |
KROKE E, SEHWARZ M, KROLL P, et al. Tri-s-triazine derivatives. Part I. From Trichloro-Tri-s-Triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002, 26: 508 − 512. doi: 10.1039/b111062b
|
[41] |
WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visiblelight[J]. Nature Materials, 2009, 8: 76 − 80. doi: 10.1038/nmat2317
|
[42] |
NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22: 4763 − 4770. doi: 10.1002/adfm.201200922
|
[43] |
DENG D, NOVOSELOV K S, FU Q, et al. Catalysis with two-dimensional materials and their heterostructures[J]. Nature Nanotechnology, 2016, 11(3): 218. doi: 10.1038/nnano.2015.340
|
[44] |
DING N, ZHANG L S, HASHIMOTO M, et al. Enhanced photocatalytic activity of mesoporous carbon/C3N4 composite photocatalysts[J]. Journal of Colloid and Interface Science, 2018, 512: 474 − 479. doi: 10.1016/j.jcis.2017.10.081
|
[45] |
MA S S, SONG Y P, XU P, et al. Facile one-step synthesis of Cu(1.96)S/g-C3N4 0D/2D p-n heterojunctions with enhanced visible light photoactivity toward ciprofloxacin degradation[J]. Materials Letters, 2018, 213: 370 − 373. doi: 10.1016/j.matlet.2017.11.026
|