-
目前,氨气选择性催化还原(NH3-SCR)技术被广泛应用于燃煤电厂、生物质电厂和垃圾焚烧等固定源的烟气脱硝,为降低我国的氮氧化物排放总量做出了巨大贡献。NH3-SCR技术的核心是催化剂,VW(Mo)Ti催化剂[V2O5-WO3(MoO3)TiO2]是最广泛使用的商业催化剂之一[1],该催化剂在300~450 ℃可以显示出较高的活性。因此,目前NH3-SCR脱硝装置通常布置在锅炉之后、静电除尘器之前,从而可以利用烟气热量以保持运行所需温度[2]。然而,这会导致催化剂暴露于高浓度粉尘和SO2等中。随着运行时间的增加,催化剂活性逐渐降低,导致烟气中NOx浓度无法达到排放要求。脱硝催化剂的使用寿命一般为2~3 年[3],失活脱硝催化剂由于含有有毒金属元素钒和多种吸附的杂质元素(砷和铅等)被归类为国家危险废物(废物代码772-007-50)。目前的主要处理方法是填埋,这不仅浪费钒、钨和钼等重要的金属资源,还会占用土地资源并对环境和人类健康造成潜在危害[4-5]。随着烟气脱硝需求的不断增加,文献[6]估算,2020年后中国每年将产生大约250 000~300 000 m3废SCR催化剂。脱硝催化剂中V2O5含量为1%~3%,WO3含量为5%~10%,TiO2含量为80%~90%。Ti、V和W是重要的金属资源,广泛应用于现代高科技设备、合金等[7]。失活脱硝催化剂的再生和资源化利用可以有效减少废催化剂量、降低处置成本和减轻对环境的影响,具有重要的环境和经济效益。
失活脱硝催化剂再生和综合利用研究进展
Research progress of regeneration and comprehensive utilization of deactivated denitrification catalysts
-
摘要: 随着钒基脱硝催化剂被大量应用于烟气脱硝中,作为危险固体废弃物的失活脱硝催化剂处置引起了人们的广泛关注。首先概述了脱硝催化剂失活的机理,然后总结了针对不同失活类型催化剂的再生方法,并介绍了部分工业再生案例,最后比较了废脱硝催化剂各种综合利用方式的优缺点。根据催化剂的失活程度和原因,合理选择再生方式和综合利用方式,以达到尽可能避免填埋处理的目的。Abstract: With the application of V-based catalysts in the flue gas denitrification, deactivated catalysts as the hazardous solid-waste have drawn much attention of human beings. In this paper, the mechanism of deactivation for denitrification catalysts was analyzed at first. The effective regeneration methods for different types of deactivated catalysts were summarized based on the reasons of catalyst deactivation and some industrial regeneration cases were introduced. The advantages and disadvantages of different comprehensive utilizations for waste catalysts were also studied. The regeneration and comprehensive utilization should be based on the level of the deactivated catalysts, thus avoiding the landfill treatment as far as possible.
-
Key words:
- denitrification catalyst /
- deactivation /
- regeneration /
- comprehensive utilization
-
表 1 不同类型的失活原因及失活机理
失活类型 失活原因 失活机理 物理失活 磨损 催化剂表面整体损坏 孔内堵塞 飞灰聚集、掉落到催
化剂表面,造成堵塞“覆盖层”中毒 各类杂质沉积在催化剂
表面上,覆盖活性位点高温烧结 载体烧结和晶型转变引
起催化剂比表面积急剧
下降,V2O5聚合和挥发化学失活 碱金属、碱土金属、
重金属和其他元素改变活性位结构或通过
电子相互作用改变NOx、
NH3的吸附行为表 2 不同原因导致脱硝催化剂失活的再生方法及其特点
中毒原因 再生方法 特点 碱与碱土金属 去离子水洗涤[15] 简单有效 SO2硫酸化[16] 可以增加酸性位点,但存在NH3、O2或H2O
时,与SO2反应生成NH4HSO4堵塞催化剂稀硫酸洗涤[17] 有效去除表面碱金属,提供酸性位点,同时造成
设备腐蚀,催化剂活性成分和机械强度的损失电泳再生[23] 能耗较高 重金属 水、乙酸和硝酸溶液[28] 酸洗可以更有效地去除重金属,并提供酸性位点 去离子水、乙酸和三亚
乙基四胺混合溶液[29]有效地去除微孔中的重金属,并络合固定PbO 砷 Ca(NO3)2[32] 碱性条件下有效去除As2O3,活性成分损失较低 NaOH溶液[32] 不能有效清除催化剂微孔中的As,
可能导致催化剂二次中毒稀硫酸洗涤[33] 有效去除As2O3 高温H2还原再生[34] 有效恢复深度As失活催化剂的活性,但会对其物化性能产生影响 SO2 热处理 有效去除硫酸铵 表 3 回收废弃V2O5-WO3/TiO2催化剂中有价金属的方法
回收方法 溶液浸出法 高温熔融法 生物浸出法 酸浸法 碱浸法 主要试剂 HCl、HNO3、H2SO4、H2C2O4 NaOH NaOH Na2CO3 嗜酸微生物 优点 有效浸出V金属 有效浸出V和W 有效回收VW和Ti 环境友好成本低 不足 V和Ti不能分离回收,大量酸性废液 V和W难以分离提纯,
大量强碱性废液能耗高、且设备需耐
高温、耐碱腐蚀可行性尚未得到充分研究 -
[1] 郝吉明, 马广大, 王书肖, 等. 大气污染控制工程[M]. 北京: 高等教育出版社, 2010: 378. [2] CHEN Z H, YANG Q, LI H, et al. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Catalysis, 2012, 276(1): 56 − 65. [3] YU Y K, HE C, CHEN J S, et al. Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1359 − 1365. doi: 10.1016/S1872-5813(13)60003-1 [4] WU W F, WANG C Y, WANG X R, et al. Removal of V and Fe from spent denitrification catalyst by using oxalic acid: Study of dissolution kinetics and toxicity[J]. Green Energy & Environment, 2020, 3(11): 1 − 3. [5] FERELLA F. A Review on management and recycling of spent selective catalytic reduction catalysts[J]. Journal of Cleaner Production, 2019, 246: 118990. [6] ZHANG Q J, WU Y F, YUAN H R. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: A review[J]. Resources Conservation and Recycling, 2020, 161: 104983. doi: 10.1016/j.resconrec.2020.104983 [7] KIM J W, LEE W G, HWANG I S, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 73 − 77. doi: 10.1016/j.jiec.2015.02.001 [8] 于艳科. 商用SCR脱硝催化剂的失活和再生机理研究[D]. 北京: 中国科学院大学, 2016. [9] 李想, 李俊华, 何煦, 等. 烟气脱硝催化剂中毒机制与再生技术[J]. 化工进展, 2015, 34(12): 4129 − 4138. [10] HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916 − 10976. doi: 10.1021/acs.chemrev.9b00202 [11] NOVA I, DALLACQUA L, LIETTI L, et al. Study of thermal deactivation of a de-NOx commercial catalyst[J]. Applied Catalysis B:Environmental, 2002, 35(1): 31 − 42. [12] 竹涛, 张星, 高放, 等. 废弃SCR催化剂再生研究进展[J]. 环境工程, 2018, 36(10): 97 − 101+188. [13] LI J H, PENG Y, CHANG H Z, et al. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 413 − 427. [14] LISI L, LASORELLA G, MALLOGGI S, et al. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Applied Catalysis B:Environmental, 2004, 50(4): 251 − 258. doi: 10.1016/j.apcatb.2004.01.007 [15] LISI L, CIMINO S. Poisoning of SCR catalysts by alkali and alkaline earth metals[J]. Catalysts, 2020, 10(12): 1475. doi: 10.3390/catal10121475 [16] YUE P, LI J H, CHEN L, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study[J]. Environmental Science & Technology, 2012, 46(5): 2864 − 2869. [17] KHODAYARI R. Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity[J]. Applied Catalysis B:Environmental, 2001, 33(4): 277 − 291. doi: 10.1016/S0926-3373(01)00193-X [18] ZHENG Y J, JENSEN A D, JOHNSSON J E, et al. Laboratory investigation of selective catalytic reduction catalysts: deactivation by potassium compounds and catalyst regeneration[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 941 − 947. [19] GAO F Y, TANG X L, Yi H H, et al. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3[J]. Chinese Science Bulletin, 2014, 59(31): 3966 − 3972. doi: 10.1007/s11434-014-0496-y [20] ZHANG Y J, GAN T, HU H Y, et al. Effective treatment and utilization of hazardous waste sulfuric acid generated from alkylation by lignocellulose ester-catalyzed oxidative degradation of organic pollutants[J]. Journal of Hazardous Materials, 2019, 380(15): 120892. [21] YUE P, LI J H, SI W Z, et al. Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic[J]. Applied Catalysis B:Environmental, 2015, 168: 195 − 202. [22] WANG X X, MA H Y, SHI Y, et al. Regeneration of alkali poisoned TiO2-based catalyst by various acids in NO selective catalytic reduction with NH3[J]. Fuel, 2021, 285(1): 119069. [23] 商雪松, 陈进生, 胡恭任, 等. 商用SCR脱硝催化剂K2O中毒后再生: (NH4)2SO4溶液[J]. 燃料化学学报, 2012, 40(6): 750 − 756. doi: 10.3969/j.issn.0253-2409.2012.06.018 [24] YUE P, LI J H, SHI W B, et al. Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method[J]. Environmental Science & Technology, 2012, 46(22): 12623 − 12629. [25] LI X, LI X S, CHEN J J, et al. An efficient novel regeneration method for Ca-poisoning V2O5-WO3/TiO2 catalyst[J]. Catalysis Communications, 2016, 87: 45 − 48. doi: 10.1016/j.catcom.2016.06.017 [26] LI X S, LIU C D, LI X, et al. A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst[J]. Catalysis Communications, 2017, 100: 112 − 116. doi: 10.1016/j.catcom.2017.06.034 [27] GUO R T, LU C Z, PAN W G, et al. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Catalysis Communications, 2015, 59: 136 − 139. doi: 10.1016/j.catcom.2014.10.006 [28] 邓双, 张凡, 刘宇, 等. 燃煤电厂铅的迁移转化研究[J]. 中国环境科学, 2013, 33(7): 1199 − 1206. [29] SENIOR C L, LIGNELL D O, SAROFIM A F, et al. Modeling arsenic partitioning in coal-fired power plants[J]. Combustion & Flame, 2006, 147(3): 209 − 221. [30] KONG M, LIU Q C, WANG X Q, et al. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst[J]. Catalysis Communications, 2015, 72: 121 − 126. doi: 10.1016/j.catcom.2015.09.029 [31] YAN D J, GUO T, YA Y U, et al. Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NO at low temperature[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 113 − 120. doi: 10.1016/S1872-5813(21)60003-8 [32] QI L Q, LI J T, YAO Y, et al. Heavy metal poisoned and regeneration of selective catalytic reduction catalysts[J]. Journal of Hazardous Materials, 2019, 366(15): 492 − 500. [33] LI X, LI J H, PENG Y, et al. Regeneration of commercial SCR catalysts: probing the existing forms of arsenic oxide[J]. Environmental Science & Technology, 2015, 49(16): 9971 − 9978. [34] TIAN Y M, YANG J, LIU L, et al. Insight into regeneration mechanism with sulfuric acid for arsenic poisoned commercial SCR catalyst[J]. Journal-Energy Institute, 2020, 93(1): 387 − 394. doi: 10.1016/j.joei.2019.02.002 [35] LU Q, ALI Z, TANG H, et al. Regeneration of commercial SCR catalyst deactivated by arsenic poisoning in coal-fired power plants[J]. Korean Journal of Chemical Engineering, 2019, 36(3): 377 − 384. doi: 10.1007/s11814-018-0227-9 [36] XUE Y D, ZHANG Y, ZHANG Y, et al. Electrochemical detoxification and recovery of spent SCR catalyst by in-situ generated reactive oxygen species in alkaline media[J]. Chemical Engineering Journal, 2017, 325: 544 − 553. doi: 10.1016/j.cej.2017.05.113 [37] ZHANG L, LI L L, CAO Y, et al. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental, 2015, 165: 589 − 598. doi: 10.1016/j.apcatb.2014.10.029 [38] BECK J. Thebehaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels[J]. Fuel, 2006, 85(10): 1541 − 1549. [39] XU L W, WANG C Z, CHANG H Z, et al. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environmental Science & Technology, 2018, 52(12): 7064 − 7071. [40] WANG Y Z, YI W, YU J, et al. A novel method for assessing SO2 poisoning effect and thermal regeneration possibility of MOx-WO3/TiO2 (M= Fe, Mn, Cu, V) catalysts for NH3-SCR[J]. Environmental Science & Technology, 2020, 54: 12612 − 12620. [41] ZHAO N, LI L, PAN S W, et al. Sulfur poisoning and regeneration of SCR catalyst based on V2O5/TiO2[J]. Advanced Materials Research, 2014, 1010-1012: 880 − 884. doi: 10.4028/www.scientific.net/AMR.1010-1012.880 [42] 李树田. 燃煤锅炉烟气SCR脱硝催化剂再生工程实践[J]. 发电设备, 2013, 27(2): 133 − 135. [43] 任启柏. 废旧脱硝催化剂再生工艺及工程案例[J]. 山东化工, 2019, 11(48): 195 − 200. [44] 宋文雷, 李扬, 王伟. 燃煤电站锅炉脱硝催化剂再生技术的研究应用[J]. 电站系统工程, 2018, 34(1): 5 − 8. [45] 熊丽仙, 栗莉. 燃煤电厂SCR脱硝催化剂失活分析及再生应用[J]. 能源环境保护, 2017, 31(6): 23 − 26. [46] MA B T, QIU Z F, YANG J, et al. Recovery of nano-TiO2 from spent SCR catalyst by sulfuric acid dissolution and direct precipitation[J]. Waste & Biomass Valorization, 2019, 10: 3037 − 3044. [47] WU W F, WANG C Y, BAO W J, et al. Selective reduction leaching of vanadium and iron by oxalic acid from spent V2O5-WO3/TiO2 catalyst[J]. Hydrometallurgy, 2018, 179: 52 − 59. doi: 10.1016/j.hydromet.2018.05.021 [48] 何川, 王乐乐, 杨晓宁, 等. 废弃选择性催化还原催化剂混掺对新催化剂脱硝性能的影响[J]. 化工进展, 2018, 37(2): 581 − 586. [49] QI C P, BAO W J, WANG L G, et al. Study of the V2O5-WO3/TiO2 catalyst synthesized from waste catalyst on selective catalytic reduction of NOx by NH3[J]. Catalysts, 2017, 7(12): 110. doi: 10.3390/catal7040110 [50] CAO Y B, HAN F, WANG M X, et al. Regeneration of the waste selective catalytic reduction denitrification catalyst by nitric acid washing[J]. ACS Omega, 2019, 4: 16629 − 16637. doi: 10.1021/acsomega.9b02288 [51] 林晓, 刘晨明, 李志强, 等. 一种SCR废烟气脱硝催化剂的回收方法, CN 104805298A[P]. 2015-07-29. [52] 韩奇, 冯丽娟, 翟文艳, 等. 草酸浸取废SCR催化剂制备光催化剂[J]. 化工环保, 2020, 40(4): 406 − 410. [53] ZHANG Q J, WU Y F, LI L L, et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 12502 − 12510. [54] 戚春萍, 武文粉, 王晨晔, 等. 燃煤电厂废旧SCR脱硝催化剂中TiO2载体的回收与再利用[J]. 化工学报, 2017, 68(11): 10. [55] LIU N N, XU X Y, LIU Y. Recovery of vanadium and tungsten from spent selective catalytic reduction catalyst by alkaline pressure leaching[J]. Physicochemical Problems of Mineral Processing, 2020, 56(3): 405 − 418. doi: 10.37190/ppmp/118475 [56] JIAO L, SONG W L, CHEN H, et al. Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis[J]. Journal of Cleaner Production, 2021, 58: 557 − 563. [57] ZHANG Q J, WU Y F, ZUO T Y. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system: thermodynamic, experimental, and kinetic studies[J]. Metallurgical and Materials Transactions B, 2019, 50: 471 − 479. doi: 10.1007/s11663-018-1475-5 [58] FONTI V, DELLANNO A, BEOLCHINI F, et al. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments[J]. Science of the Total Environment, 2016, 563-564: 302 − 319. doi: 10.1016/j.scitotenv.2016.04.094 [59] WANG S H, XIE Y L, YAN W F, et al. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms[J]. Science of the Total Environment, 2018, 639: 497 − 503. doi: 10.1016/j.scitotenv.2018.05.168 [60] 沈岳松, 刘海沛, 沈树宝, 等. 以废旧钒钛脱硝催化剂为原料的钛基陶瓷及制备方法, CN105347785B[P]. 2016-02-24. [61] 刘海沛, 李众, 沈岳松, 等. 不同外加剂对废弃脱硝催化剂制备钛基陶瓷性能的影响[J]. 热力发电, 2017, 46(7): 66 − 71. [62] 刘海沛, 严巍, 李众等. 废弃脱硝催化剂制备瓷质砖的研究[J]. 环境工程2017(增刊2), 2017: 242-246. [63] 张陆文. 废弃SCR脱硝催化产品的无害化处理与再利用[D]. 南京: 南京工业大学, 2013. [64] 王彩兰. 一种钛基陶瓷及其绿色制备方法, CN108341657A[P]. 2018-07-31. [65] KOTHARI K, RADHAKRISHNAN R, WERELEY N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55: 1 − 16. doi: 10.1016/j.paerosci.2012.04.001 [66] 陈广玉, 康嘉龙, 刘俊杰, 等. 废弃脱硝催化剂直接合金化研究[J]. 钢铁钒钛, 2018, 39(6): 99 − 102. doi: 10.7513/j.issn.1004-7638.2018.06.016 [67] 陈广玉, 康嘉龙, 吴世杰, 等. 废弃脱硝催化剂直接合金化的热力学计算和动力学研究[J]. 钢铁钒钛, 2019, 40(2): 87 − 91. doi: 10.7513/j.issn.1004-7638.2019.02.014 [68] 朴荣勋, 马兰, 杨绍利, 等. 废SCR钛基脱硝催化剂铝热还原重熔制备含铬钛铝基合金的试验研究[J]. 钢铁钒钛, 2019, 40(2): 79 − 86. [69] 朴荣勋, 马兰, 杨绍利, 等. 废弃脱硝催化剂铝热还原—真空磁悬浮精炼制备钛铝基合金试验研究[J]. 钢铁钒钛, 2019, 40(3): 39 − 45. [70] 彭军, 陈广玉, 刘丽霞, 等. 一种含废弃脱硝催化剂的冶金钛渣和铁钛钒合金的制备方法, CN108677016B[P]. 2018-10-19.