[1] 郝吉明, 马广大, 王书肖, 等. 大气污染控制工程[M]. 北京: 高等教育出版社, 2010: 378.
[2] CHEN Z H, YANG Q, LI H, et al. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Catalysis, 2012, 276(1): 56 − 65.
[3] YU Y K, HE C, CHEN J S, et al. Deactivation mechanism of de-NOx catalyst (V2O5-WO3/TiO2) used in coal fired power plant[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1359 − 1365. doi: 10.1016/S1872-5813(13)60003-1
[4] WU W F, WANG C Y, WANG X R, et al. Removal of V and Fe from spent denitrification catalyst by using oxalic acid: Study of dissolution kinetics and toxicity[J]. Green Energy & Environment, 2020, 3(11): 1 − 3.
[5] FERELLA F. A Review on management and recycling of spent selective catalytic reduction catalysts[J]. Journal of Cleaner Production, 2019, 246: 118990.
[6] ZHANG Q J, WU Y F, YUAN H R. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: A review[J]. Resources Conservation and Recycling, 2020, 161: 104983. doi: 10.1016/j.resconrec.2020.104983
[7] KIM J W, LEE W G, HWANG I S, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 73 − 77. doi: 10.1016/j.jiec.2015.02.001
[8] 于艳科. 商用SCR脱硝催化剂的失活和再生机理研究[D]. 北京: 中国科学院大学, 2016.
[9] 李想, 李俊华, 何煦, 等. 烟气脱硝催化剂中毒机制与再生技术[J]. 化工进展, 2015, 34(12): 4129 − 4138.
[10] HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916 − 10976. doi: 10.1021/acs.chemrev.9b00202
[11] NOVA I, DALLACQUA L, LIETTI L, et al. Study of thermal deactivation of a de-NOx commercial catalyst[J]. Applied Catalysis B:Environmental, 2002, 35(1): 31 − 42.
[12] 竹涛, 张星, 高放, 等. 废弃SCR催化剂再生研究进展[J]. 环境工程, 2018, 36(10): 97 − 101+188.
[13] LI J H, PENG Y, CHANG H Z, et al. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Frontiers of Environmental Science & Engineering, 2016, 10(3): 413 − 427.
[14] LISI L, LASORELLA G, MALLOGGI S, et al. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Applied Catalysis B:Environmental, 2004, 50(4): 251 − 258. doi: 10.1016/j.apcatb.2004.01.007
[15] LISI L, CIMINO S. Poisoning of SCR catalysts by alkali and alkaline earth metals[J]. Catalysts, 2020, 10(12): 1475. doi: 10.3390/catal10121475
[16] YUE P, LI J H, CHEN L, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study[J]. Environmental Science & Technology, 2012, 46(5): 2864 − 2869.
[17] KHODAYARI R. Regeneration of commercial SCR catalysts by washing and sulphation: effect of sulphate groups on the activity[J]. Applied Catalysis B:Environmental, 2001, 33(4): 277 − 291. doi: 10.1016/S0926-3373(01)00193-X
[18] ZHENG Y J, JENSEN A D, JOHNSSON J E, et al. Laboratory investigation of selective catalytic reduction catalysts: deactivation by potassium compounds and catalyst regeneration[J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 941 − 947.
[19] GAO F Y, TANG X L, Yi H H, et al. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3[J]. Chinese Science Bulletin, 2014, 59(31): 3966 − 3972. doi: 10.1007/s11434-014-0496-y
[20] ZHANG Y J, GAN T, HU H Y, et al. Effective treatment and utilization of hazardous waste sulfuric acid generated from alkylation by lignocellulose ester-catalyzed oxidative degradation of organic pollutants[J]. Journal of Hazardous Materials, 2019, 380(15): 120892.
[21] YUE P, LI J H, SI W Z, et al. Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic[J]. Applied Catalysis B:Environmental, 2015, 168: 195 − 202.
[22] WANG X X, MA H Y, SHI Y, et al. Regeneration of alkali poisoned TiO2-based catalyst by various acids in NO selective catalytic reduction with NH3[J]. Fuel, 2021, 285(1): 119069.
[23] 商雪松, 陈进生, 胡恭任, 等. 商用SCR脱硝催化剂K2O中毒后再生: (NH4)2SO4溶液[J]. 燃料化学学报, 2012, 40(6): 750 − 756. doi: 10.3969/j.issn.0253-2409.2012.06.018
[24] YUE P, LI J H, SHI W B, et al. Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method[J]. Environmental Science & Technology, 2012, 46(22): 12623 − 12629.
[25] LI X, LI X S, CHEN J J, et al. An efficient novel regeneration method for Ca-poisoning V2O5-WO3/TiO2 catalyst[J]. Catalysis Communications, 2016, 87: 45 − 48. doi: 10.1016/j.catcom.2016.06.017
[26] LI X S, LIU C D, LI X, et al. A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst[J]. Catalysis Communications, 2017, 100: 112 − 116. doi: 10.1016/j.catcom.2017.06.034
[27] GUO R T, LU C Z, PAN W G, et al. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Catalysis Communications, 2015, 59: 136 − 139. doi: 10.1016/j.catcom.2014.10.006
[28] 邓双, 张凡, 刘宇, 等. 燃煤电厂铅的迁移转化研究[J]. 中国环境科学, 2013, 33(7): 1199 − 1206.
[29] SENIOR C L, LIGNELL D O, SAROFIM A F, et al. Modeling arsenic partitioning in coal-fired power plants[J]. Combustion & Flame, 2006, 147(3): 209 − 221.
[30] KONG M, LIU Q C, WANG X Q, et al. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst[J]. Catalysis Communications, 2015, 72: 121 − 126. doi: 10.1016/j.catcom.2015.09.029
[31] YAN D J, GUO T, YA Y U, et al. Lead poisoning and regeneration of Mn-Ce/TiO2 catalysts for NH3-SCR of NO at low temperature[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 113 − 120. doi: 10.1016/S1872-5813(21)60003-8
[32] QI L Q, LI J T, YAO Y, et al. Heavy metal poisoned and regeneration of selective catalytic reduction catalysts[J]. Journal of Hazardous Materials, 2019, 366(15): 492 − 500.
[33] LI X, LI J H, PENG Y, et al. Regeneration of commercial SCR catalysts: probing the existing forms of arsenic oxide[J]. Environmental Science & Technology, 2015, 49(16): 9971 − 9978.
[34] TIAN Y M, YANG J, LIU L, et al. Insight into regeneration mechanism with sulfuric acid for arsenic poisoned commercial SCR catalyst[J]. Journal-Energy Institute, 2020, 93(1): 387 − 394. doi: 10.1016/j.joei.2019.02.002
[35] LU Q, ALI Z, TANG H, et al. Regeneration of commercial SCR catalyst deactivated by arsenic poisoning in coal-fired power plants[J]. Korean Journal of Chemical Engineering, 2019, 36(3): 377 − 384. doi: 10.1007/s11814-018-0227-9
[36] XUE Y D, ZHANG Y, ZHANG Y, et al. Electrochemical detoxification and recovery of spent SCR catalyst by in-situ generated reactive oxygen species in alkaline media[J]. Chemical Engineering Journal, 2017, 325: 544 − 553. doi: 10.1016/j.cej.2017.05.113
[37] ZHANG L, LI L L, CAO Y, et al. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental, 2015, 165: 589 − 598. doi: 10.1016/j.apcatb.2014.10.029
[38] BECK J. Thebehaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels[J]. Fuel, 2006, 85(10): 1541 − 1549.
[39] XU L W, WANG C Z, CHANG H Z, et al. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environmental Science & Technology, 2018, 52(12): 7064 − 7071.
[40] WANG Y Z, YI W, YU J, et al. A novel method for assessing SO2 poisoning effect and thermal regeneration possibility of MOx-WO3/TiO2 (M= Fe, Mn, Cu, V) catalysts for NH3-SCR[J]. Environmental Science & Technology, 2020, 54: 12612 − 12620.
[41] ZHAO N, LI L, PAN S W, et al. Sulfur poisoning and regeneration of SCR catalyst based on V2O5/TiO2[J]. Advanced Materials Research, 2014, 1010-1012: 880 − 884. doi: 10.4028/www.scientific.net/AMR.1010-1012.880
[42] 李树田. 燃煤锅炉烟气SCR脱硝催化剂再生工程实践[J]. 发电设备, 2013, 27(2): 133 − 135.
[43] 任启柏. 废旧脱硝催化剂再生工艺及工程案例[J]. 山东化工, 2019, 11(48): 195 − 200.
[44] 宋文雷, 李扬, 王伟. 燃煤电站锅炉脱硝催化剂再生技术的研究应用[J]. 电站系统工程, 2018, 34(1): 5 − 8.
[45] 熊丽仙, 栗莉. 燃煤电厂SCR脱硝催化剂失活分析及再生应用[J]. 能源环境保护, 2017, 31(6): 23 − 26.
[46] MA B T, QIU Z F, YANG J, et al. Recovery of nano-TiO2 from spent SCR catalyst by sulfuric acid dissolution and direct precipitation[J]. Waste & Biomass Valorization, 2019, 10: 3037 − 3044.
[47] WU W F, WANG C Y, BAO W J, et al. Selective reduction leaching of vanadium and iron by oxalic acid from spent V2O5-WO3/TiO2 catalyst[J]. Hydrometallurgy, 2018, 179: 52 − 59. doi: 10.1016/j.hydromet.2018.05.021
[48] 何川, 王乐乐, 杨晓宁, 等. 废弃选择性催化还原催化剂混掺对新催化剂脱硝性能的影响[J]. 化工进展, 2018, 37(2): 581 − 586.
[49] QI C P, BAO W J, WANG L G, et al. Study of the V2O5-WO3/TiO2 catalyst synthesized from waste catalyst on selective catalytic reduction of NOx by NH3[J]. Catalysts, 2017, 7(12): 110. doi: 10.3390/catal7040110
[50] CAO Y B, HAN F, WANG M X, et al. Regeneration of the waste selective catalytic reduction denitrification catalyst by nitric acid washing[J]. ACS Omega, 2019, 4: 16629 − 16637. doi: 10.1021/acsomega.9b02288
[51] 林晓, 刘晨明, 李志强, 等. 一种SCR废烟气脱硝催化剂的回收方法, CN 104805298A[P]. 2015-07-29.
[52] 韩奇, 冯丽娟, 翟文艳, 等. 草酸浸取废SCR催化剂制备光催化剂[J]. 化工环保, 2020, 40(4): 406 − 410.
[53] ZHANG Q J, WU Y F, LI L L, et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 12502 − 12510.
[54] 戚春萍, 武文粉, 王晨晔, 等. 燃煤电厂废旧SCR脱硝催化剂中TiO2载体的回收与再利用[J]. 化工学报, 2017, 68(11): 10.
[55] LIU N N, XU X Y, LIU Y. Recovery of vanadium and tungsten from spent selective catalytic reduction catalyst by alkaline pressure leaching[J]. Physicochemical Problems of Mineral Processing, 2020, 56(3): 405 − 418. doi: 10.37190/ppmp/118475
[56] JIAO L, SONG W L, CHEN H, et al. Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis[J]. Journal of Cleaner Production, 2021, 58: 557 − 563.
[57] ZHANG Q J, WU Y F, ZUO T Y. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system: thermodynamic, experimental, and kinetic studies[J]. Metallurgical and Materials Transactions B, 2019, 50: 471 − 479. doi: 10.1007/s11663-018-1475-5
[58] FONTI V, DELLANNO A, BEOLCHINI F, et al. Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments[J]. Science of the Total Environment, 2016, 563-564: 302 − 319. doi: 10.1016/j.scitotenv.2016.04.094
[59] WANG S H, XIE Y L, YAN W F, et al. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms[J]. Science of the Total Environment, 2018, 639: 497 − 503. doi: 10.1016/j.scitotenv.2018.05.168
[60] 沈岳松, 刘海沛, 沈树宝, 等. 以废旧钒钛脱硝催化剂为原料的钛基陶瓷及制备方法, CN105347785B[P]. 2016-02-24.
[61] 刘海沛, 李众, 沈岳松, 等. 不同外加剂对废弃脱硝催化剂制备钛基陶瓷性能的影响[J]. 热力发电, 2017, 46(7): 66 − 71.
[62] 刘海沛, 严巍, 李众等. 废弃脱硝催化剂制备瓷质砖的研究[J]. 环境工程2017(增刊2), 2017: 242-246.
[63] 张陆文. 废弃SCR脱硝催化产品的无害化处理与再利用[D]. 南京: 南京工业大学, 2013.
[64] 王彩兰. 一种钛基陶瓷及其绿色制备方法, CN108341657A[P]. 2018-07-31.
[65] KOTHARI K, RADHAKRISHNAN R, WERELEY N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012, 55: 1 − 16. doi: 10.1016/j.paerosci.2012.04.001
[66] 陈广玉, 康嘉龙, 刘俊杰, 等. 废弃脱硝催化剂直接合金化研究[J]. 钢铁钒钛, 2018, 39(6): 99 − 102. doi: 10.7513/j.issn.1004-7638.2018.06.016
[67] 陈广玉, 康嘉龙, 吴世杰, 等. 废弃脱硝催化剂直接合金化的热力学计算和动力学研究[J]. 钢铁钒钛, 2019, 40(2): 87 − 91. doi: 10.7513/j.issn.1004-7638.2019.02.014
[68] 朴荣勋, 马兰, 杨绍利, 等. 废SCR钛基脱硝催化剂铝热还原重熔制备含铬钛铝基合金的试验研究[J]. 钢铁钒钛, 2019, 40(2): 79 − 86.
[69] 朴荣勋, 马兰, 杨绍利, 等. 废弃脱硝催化剂铝热还原—真空磁悬浮精炼制备钛铝基合金试验研究[J]. 钢铁钒钛, 2019, 40(3): 39 − 45.
[70] 彭军, 陈广玉, 刘丽霞, 等. 一种含废弃脱硝催化剂的冶金钛渣和铁钛钒合金的制备方法, CN108677016B[P]. 2018-10-19.