-
工业是我国国民经济中十分重要的物质生产部门之一。随着我国工业的飞速发展,工业生产规模不断扩大,由此产生了越来越多的环境问题。在工业生产过程中,各类行业的化工产品数量种类繁多,成分复杂多样,会产生大量的化工废水。这类废水通常含有许多复杂难降解的污染物,并且具有较强的生物毒性,排放到环境中可能会破坏生态环境,危害人类健康。因此,通过一定的处理手段使化工废水达到无毒排放是十分重要的。
化工废水毒性评价方法及毒性削减研究进展
Research progress of toxicity evaluation methods and toxicity reduction of chemical wastewater
-
摘要: 化工废水排放量大,成分复杂,包含多种有毒有害物质,如果不经过适当的处理将会对自然环境乃至人们的身体健康造成一定的危害。生物毒性测试可以在化学分析的基础上更加全面系统地评价水质的安全性,文章综述了不同化工行业废水的毒性削减情况,为化工废水的毒性减排提供借鉴。Abstract: Chemical wastewater has the features of large emissions, complex composition, and it contains a variety of toxic and harmful substances. It will cause certain harm to the natural environment and even people's health without the effective treatment. Biological toxicity testing can evaluate the safety of water quality more comprehensively and systematically base on the chemical analysis. This article summarized the toxicity reduction of wastewater in different chemical industries, and provided a reference for the reduction of toxicity of the chemical wastewater.
-
Key words:
- chemical wastewater /
- toxicity evaluation /
- biological toxicity test /
- toxicity reduction
-
表 1 急性毒性评价方法
测试项目 受试生物 测试指标 需要仪器/设备 藻类生长
抑制毒性斜生珊藻、羊角月牙藻、舟形
藻、水华鱼腥藻、集球藻72 h EC50
细胞计数
光密度
叶绿素照度计
光照培养箱
机械振荡器
检测细胞设备
(电子颗粒计数计,分光光度计)发光细菌
急性毒性发光细菌 IC50 Microtox M500 溞类急性毒性 大型溞 24 h EC50 溶解氧测定仪
硬度计
pH计
TOC;
COD鱼类急性毒性 稀有鮈鲫、斑马鱼、剑尾鱼 96 h LC50 溶解氧测定仪
硬度计
pH计
分析天平表 2 毒性单位分级标准
分级 TU值 毒性 Ⅰ TU<0.4 无毒 Ⅱ 0.4≤TU<1 微毒 Ⅲ 1≤TU<10 中毒 Ⅳ 10≤TU<100 高毒 Ⅴ TU≥100 剧毒 -
[1] NASR F A, DOMA H S, ABDEL Halim HS, et al. Chemical industry wastewater treatment[J]. The Environmentalist, 2007, 27(2): 275 − 286. doi: 10.1007/s10669-007-9004-0 [2] 国家统计局、环境保护部. 中国环境统计年鉴—2007[M]. 北京: 中国统计出版社, 2007. [3] 国家统计局、环境保护部. 中国环境统计年鉴—2008[M]. 北京: 中国统计出版社, 2008. [4] 国家统计局、环境保护部. 中国环境统计年鉴—2009[M]. 北京: 中国统计出版社, 2009. [5] 国家统计局、环境保护部. 中国环境统计年鉴—2010[M]. 北京: 中国统计出版社, 2010. [6] 国家统计局、环境保护部. 中国环境统计年鉴—2011[M]. 北京: 中国统计出版社, 2011. [7] 国家统计局、环境保护部. 中国环境统计年鉴—2012[M]. 北京: 中国统计出版社, 2012. [8] 国家统计局、环境保护部. 中国环境统计年鉴—2013[M]. 北京: 中国统计出版社, 2013. [9] 国家统计局、环境保护部. 中国环境统计年鉴—2014[M]. 北京: 中国统计出版社, 2014. [10] 国家统计局、环境保护部. 中国环境统计年鉴—2015[M]. 北京: 中国统计出版社, 2015. [11] 国家统计局、环境保护部. 中国环境统计年鉴—2016[M]. 北京: 中国统计出版社, 2016. [12] 雷平, 施祖麟. 企业数量、规模与经济增长——基于省级工业面板数据的研究[J]. 经济经纬, 2008(2): 101 − 104. doi: 10.3969/j.issn.1006-1096.2008.02.028 [13] 张统, 李志颖, 董春宏, 等. 我国工业废水处理现状及污染防治对策[J]. 给水排水, 2020, 56(10): 1 − 3. [14] 郑彭生. 煤化工废水厌氧生物处理技术研究进展[J]. 水处理技术, 2021, 47(6): 24 − 27. [15] 成琳. 造纸废水处理技术的研究进展[J]. 化学工程师, 2021, 35(5): 60 − 62. [16] 张彦. 纺织印染废水处理的自动化策略与系统设计[J]. 工业水处理, 2021, 41(3): 133 − 136. [17] 姜玉娟, 陈志强. 电镀废水处理技术的研究进展[J]. 环境科学与管理, 2015, 40(3): 45 − 48. doi: 10.3969/j.issn.1673-1212.2015.03.011 [18] 周涛. 农药废水处理方法与工艺研究进展[J]. 绿色科技, 2020(24): 60 − 62. doi: 10.3969/j.issn.1674-9944.2020.24.019 [19] 赵经纬. 农药废水的资源化处理及减排技术展望[J]. 世界农药, 2010, 32(S1): 38 − 43. doi: 10.3969/j.issn.1009-6485.2010.z1.010 [20] 翁新春, 方薇, 陈祎斐. 食品工业废水处理工艺及节能探究[J]. 资源节约与环保, 2015(2): 63. doi: 10.3969/j.issn.1673-2251.2015.02.055 [21] 王思巧. 食品工业废水处理技术概述[J]. 科技经济导刊, 2016(9): 141 − 142. [22] 蔡荣华, 高春娟, 张家凯, 等. 冶金废水资源及其利用[J]. 盐业与化工, 2013, 42(6): 1 − 3. [23] 江敏顾, 李咏梅. 废水综合毒性研究方法综述[J]. 环境科学与技术, 2007, 30(增1): 193 − 197. doi: 10.3969/j.issn.1003-6504.2007.增1.077 [24] 梁慧, 袁鹏, 宋永会, 等. 工业废水毒性评估方法与应用研究进展[J]. 中国环境监测, 2013, 29(6): 85 − 91. doi: 10.3969/j.issn.1002-6002.2013.06.017 [25] 赵风云, 孙根行. 工业废水生物毒性的研究进展[J]. 工业水处理, 2010, 30(4): 22 − 25. doi: 10.3969/j.issn.1005-829X.2010.04.006 [26] PERSOONE G, MARSALEK B, BLINOVA I, et al. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters[J]. Environmental Toxicology, 2003, 18(6): 395 − 402. doi: 10.1002/tox.10141 [27] 赵建亮, 方怡向, 应光国. 工业废水毒性鉴定评价方法体系的建议及其应用示例[J]. 生态环境学报, 2011, 20(3): 549 − 559. doi: 10.3969/j.issn.1674-5906.2011.03.028 [28] 陈玲, 翁景霞, 刘苏, 等. 工业废水毒性评估与致毒物质鉴别技术进展[J]. 环境监控与预警, 2018, 10(3): 1 − 8. doi: 10.3969/j.issn.1674-6732.2018.03.001 [29] LI H, ZHANG J, YOU J. Diagnosis of complex mixture toxicity in sediments: Application of toxicity identification evaluation (TIE) and effect-directed analysis (EDA)[J]. Environmental Pollution, 2018, 237: 944 − 954. doi: 10.1016/j.envpol.2017.11.005 [30] 高巍. 化工废水处理工艺技术的研究及应用进展[J]. 资源节约与环保, 2021(1): 85 − 86. doi: 10.3969/j.issn.1673-2251.2021.01.048 [31] 易小意. 毒性鉴别评价和效应导向分析的联用: 广州河涌沉积物中致毒物的筛查[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2017. [32] JOHANNES V, MICHAEL S, ULF M, et al. Systematic review of toxicity removal by advanced wastewater treatment technologies via ozonation and activated carbon[J]. Environmental Science & Technology, 2019, 53: 13,7215 − 7233. [33] 熊道毅, 王硕煜, 丁贵军, 等. 膜分离技术在电镀废水处理中的应用进展[J]. 科技展望, 2016, 26(20): 75. doi: 10.3969/j.issn.1672-8289.2016.20.068 [34] 张厚, 施力匀, 杨春, 等. 电镀废水处理技术研究进展[J]. 电镀与精饰, 2018, 40(2): 36 − 41. doi: 10.3969/j.issn.1001-3849.2018.02.009 [35] 巨润科. 电镀废水处理技术的研究进展[J]. 当代化工研究, 2016(3): 27 − 28. [36] DURGO K, ORESCANIN V, HORVAT T, et al. Cytotoxicity and mutagenicity study of waste and purified water samples from electroplating industries prepared by use of ferrous sulfate and wood fly ash[J]. Journal of Environmental Science and Health, Part A. 2005, 40(5): 949-957. [37] BENVENUTI T, RODRIGURS M, ARENZON A, et al. Toxicity effects of nickel electroplating effluents treated by photoelectrooxidation in the industries of the Sinos River Basin[J]. Brazilian Journal of Biology, 2015, 75: 17 − 24. [38] LI Q, FU L, WANG Z, et al. Synthesis and characterization of a novel magnetic cation exchange resin and its application for efficient removal of Cu2+ and Ni2+ from aqueous solutions[J]. Journal of Cleaner Production, 2017, 165: 801 − 810. doi: 10.1016/j.jclepro.2017.06.150 [39] KOBYA M, DEMIRBAS E, OZYONAR F, et al. Treatments of alkaline non-cyanide, alkaline cyanide and acidic zinc electroplating wastewaters by electrocoagulation[J]. Process Safety and Environmental Protection, 2017, 105: 373 − 385. doi: 10.1016/j.psep.2016.11.020 [40] 符丽纯, 戴建军, 陈利芳, 等. 基于树脂吸附的电镀废水深度处理工程实例[J]. 水处理技术, 2018, 44(1): 128 − 131. [41] KIM T K, KIM T, JO A, et al. Degradation mechanism of cyanide in water using a UV-LED/H2O2/Cu2+ system[J]. Chemosphere, 2018, 208: 441 − 449. doi: 10.1016/j.chemosphere.2018.05.198 [42] 刘俊逸, 黄青, 李杰, 等. 印染工业废水处理技术的研究进展[J]. 水处理技术, 2021, 47(3): 1 − 6. [43] 任钢锋. 我国工业印染废水处理状况研究[J]. 节能与环保, 2021(4): 76 − 78. doi: 10.3969/j.issn.1009-539X.2021.04.028 [44] 丁振中, 张超, 朱萌. 活性染料印染废水处理工艺研究[J]. 皮革制作与环保科技, 2021, 2(6): 161 − 162. [45] TKACZYK A, MITROWSKA K, POSYNIAK A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review[J]. Science of the Total Environment, 2020, 717: 137222. doi: 10.1016/j.scitotenv.2020.137222 [46] FRIJTERS C, VOS R H, SCHEFFER G, et al. Decolorizing and detoxifying textile wastewater, containing both soluble and insoluble dyes, in a full scale combined anaerobic/aerobic system[J]. Water Research, 2006, 40(6): 1249 − 1257. doi: 10.1016/j.watres.2006.01.013 [47] 周崟, 李平, 吴锦华, 等. 活性艳蓝KN-R染料废水的电解氧化及其毒性削减[J]. 化工环保, 2009, 29(1): 10 − 13. doi: 10.3969/j.issn.1006-1878.2009.01.003 [48] KALATHIL S, LEE J, CHO M H. Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell[J]. Bioresource Technology, 2012, 119: 22 − 27. doi: 10.1016/j.biortech.2012.05.059 [49] CHEN Z, HUANG X, SUN X, et al. Comparative study of the degradation of real dyestuff effluents by three kinds of electrolysis methods[J]. Applied Mechanics and Materials, 2012, 253–255: 943–948. [50] HERNANDEZ M, CRISTIANI E, MARTINEZ F, et al. Bioremoval of the azo dye Congo red by the microalga Chlorella vulgaris[J]. Environmental Science and Pollution Research, 2015, 22(14): 10811 − 10823. doi: 10.1007/s11356-015-4277-1 [51] 姚英, 于存. 一色齿毛菌对刚果红的脱色优化及其毒性变化研究[J]. 菌物学报, 2019, 38(2): 272 − 280. [52] LIANG J, NING X A, SUN J, et al. An integrated permanganate and ozone process for the treatment of textile dyeing wastewater: Efficiency and mechanism[J]. Journal of Cleaner Production, 2018, 204: 12 − 19. doi: 10.1016/j.jclepro.2018.08.112 [53] 张颖. 煤化工废水处理关键问题解析及技术发展趋势[J]. 石河子科技, 2021(3): 18 − 19. doi: 10.3969/j.issn.1008-0899.2021.03.010 [54] 费凡, 张培培. 煤化工废水处理技术进展及发展方向[J]. 化工管理, 2019(4): 35 − 36. doi: 10.3969/j.issn.1008-4800.2019.04.019 [55] ZHANG W, LIU Z, CHEN P, et al. Preparation of supported perovskite catalyst to purify membrane concentrate of coal chemical wastewater in UV-catalytic wet hydrogen peroxide oxidation system[J]. International Journal of Environmental Research and Public Health, 2021, 18(9): 4906. doi: 10.3390/ijerph18094906 [56] XU P, XU H, ZHENG D, et al. The efficiency and mechanism in a novel electro—Fenton process assisted by anodic photocatalysis on advanced treatment of coal gasification wastewater[J]. Chemical Engineering Journal, 2019, 361: 968 − 974. doi: 10.1016/j.cej.2018.12.171 [57] 陆曦, 牟伟腾, 刘宁, 等. 臭氧耦合过氧化氢去除煤化工废水中对苯二酚研究[J]. 煤炭科学技术, 2019, 47(6): 225 − 230. [58] XIANG W. The research on the current situation and advances of petrochemical wastewater treatment[J]. Advanced Materials Research, 2012, 1914: 550–553. [59] 何娟. 石油化工废水处理技术研究进展[J]. 节能与环保, 2021(7): 54 − 55. doi: 10.3969/j.issn.1009-539X.2021.07.020 [60] GONG C, REN X, HAN J, et al. Toxicity reduction of reverse osmosis concentrates from petrochemical wastewater by electrocoagulation and Fered-Fenton treatments[J]. Chemosphere, 2022, 286: 131582. doi: 10.1016/j.chemosphere.2021.131582 [61] 张瑛, 曹迪, 胡丽萍, 等. 某石化废水的综合毒性评价及其处理工艺对毒性的削减规律研究[J]. 生态毒理学报, 2017, 12(5): 109 − 118. doi: 10.7524/AJE.1673-5897.20170212001 [62] CHEN W, HE Z, HUANG G, et al. Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution[J]. Chemical Engineering Journal, 2019, 359: 244 − 253. doi: 10.1016/j.cej.2018.11.141 [63] 吴巍, 刘玲, 赖晓晨. 弗罗里硅土处理低质量浓度氨氮废水研究[J]. 辽宁石油化工大学学报, 2022, 42(3): 17 − 21. [64] CHEE H, HEE D, SONG B. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment[J]. Water Research, 2020, 172: 115514. doi: 10.1016/j.watres.2020.115514 [65] 姜城焰, 刘睿, 刘立恒. 农药废水处理研究进展[J]. 轻工科技, 2021, 37(1): 88 − 91. [66] TRELLU C, OLVERA VARGAS H, MOUSSET E, et al. Electrochemical technologies for the treatment of pesticides[J]. Current Opinion in Electrochemistry, 2021, 26: 100677. doi: 10.1016/j.coelec.2020.100677 [67] JIANG J. Research on catalytic oxidation pretreatment of organic pesticide wastewater with high concentration[J]. MATEC Web of Conferences, 2016, 62: 05004. doi: 10.1051/matecconf/20166205004 [68] FEMIA J, MARIANI M, ZALAZAR C, et al. Photodegradation of chlorpyrifos in water by UV/H2O2 treatment: toxicity evaluation[J]. Water Science and Technology, 2013, 68(10): 2279 − 2286. doi: 10.2166/wst.2013.493 [69] 熊正龙, 刘爱翠, 刘国伟, 等. US/O3工艺改善农药废水可生化性和生物毒性的效能[J]. 工业水处理, 2014, 34(3): 65 − 67. doi: 10.3969/j.issn.1005-829X.2014.03.018