-
城市生活垃圾的处理方式随着经济与技术的发展不断变化。20世纪90年代,国内大部分城市采用填埋的方式来处理城市生活垃圾,但是随着城市用地的紧张,“十二五”期间国家出台了一系列政策文件,城市生活垃圾处理方式逐渐从全量填埋转向焚烧发电和卫生填埋并重的格局,2020年底垃圾焚烧处理率要求达到40%。“十三五”生态环境保护规划对于垃圾处理技术应用要求是:大中型城市重点发展生活垃圾焚烧发电技术,积极发展生物处理技术,合理统筹填埋处理技术。
目前,城市生活垃圾处理方式已不再是单一的卫生填埋,处理技术的应用开始多样化。城市生活垃圾处理技术应用的变化也带来了垃圾渗滤液处理技术的变化与发展。
垃圾渗滤液处理技术及工程化发展方向
Landfill Leachate Treatment Techniques and Engineering Development Direction: A Review
-
摘要: 渗滤液水质特性复杂,含有大量COD、氨氮、重金属等有毒有害物质,国内外学者进行了广泛的实验室及工程化应用研究。文章介绍了不同来源的渗滤液的水质特点及目前国内具有代表性的4种工艺组合路线,分析了国内主流渗滤液处理技术面临的问题,并提出了工程化应用研究发展的方向。Abstract: The composition of the landfill leachate is complex, which contains high strength of COD, ammonia nitrogen and heavy metals. Lab and industrial scale tests of landfill leachate treatments have been widely carried out by researchers all over the world. In this study, water quality characteristics of landfill leachate from different sources and four typical integrated treatment process routes utilized in China were introduced. This paper reviewed the main drawbacks of the current treatment techniques and proposed perspectives for future researches.
-
表 1 各类渗滤液典型水质
渗滤液 COD/g·L−1 BOD/g·L−1 氨氮/g·L−1 总氮/g·L−1 TP/mg·L−1 Cl−/g·L−1 pH 生活垃圾填埋场渗滤液 10~25 5~8 1.5~3.5 1.8~4.0 15 − 6~8 生活垃圾焚烧厂渗滤液 40~70 30~40 0.8~1.5 1.0~2.0 80~150 3.5 6~8 飞灰填埋场渗滤液 0.5~2.0 0.1~0.3 0.1~0.15 0.12~0.2 − 15~50 7~10 表 2 种典型工艺路线优缺点对比分析表
工艺路线类型 优点 缺点 UASB+外置式MBR+NF/RO工艺路线组合 1. 采用生物法去除氨氮、总氮,高效、经济
2. 膜分离技术增加系统污泥浓度,占地小
3. 出水水质稳定、可靠1. MBR技术与其它生物处理技术相比,能耗较高
2. 外置式超滤、NF、RO膜系统的应用,能耗高,需定期更换膜组件
3. 系统产生15%~25%的浓缩液,需另外处理AT-BC生物转盘+曝气池+芬顿氧化+生物滤池工艺路线组合 1. 低氧状态运行,能耗较低
2. 采用生物膜的处理工艺,同步硝化反硝化,碳源需求低,抗冲击能力强
3. 采用高级氧化方式能较为彻底的解决环境问题,无浓缩液产生1. 需投加营养液
2. 需要根据水质变化调整芬顿氧化反应条件:pH、双氧水与Fe2+摩尔比、Fe2+浓度等
3. 需要投加化学药剂,产生较多化学污泥
4. 占地面积较大氨吹脱+A/O/O生化池+内置式MBR+NF工艺路线组合 1. 采用氨吹脱的方式去除氨氮,减少对高浓度氨氮对生化的影响
2. 内置MBR工艺,能耗相对较低
3. 出水水质稳定、可靠1. 需要酸、碱调节,氨吹脱成本相对较高
2. 需要解决氨吸收产品的出路问题
3. 系统产生15%的浓缩液,需另外处理两级DTRO/STRO工艺路线组合 1. 无需生化工艺,设备占地少
2. 系统易于启动
3. 出水水质可靠
4. 适合于可生化性差的老龄填埋场1. 系统投资和运营成本较高
2. 系统产生25%的浓缩液,需另外处理
3. 膜通量易衰减 -
[1] WISZNIOWSKI J, ROBERT D, SURMACZ-GORSKA J, et al. Landfill leachate treatment methods: A review[J]. Environmental Chemistry Letters, 2006, 4(1): 51 − 61. doi: 10.1007/s10311-005-0016-z [2] NAVEEN B P, MAHAPATRA D M, SITHARAM T. G, et al. Physico- chemical and biological characterization of urban municipal landfill leachate[J]. Environmental Pollution, 2017, 220: 1 − 12. doi: 10.1016/j.envpol.2016.09.002 [3] RENOU S, GIVAUDAN J. G, POULAIN S, et al. Landfill leachate treatment: Review and opportunity[J]. Journal of Hazardous Materials, 2008, 150(3): 468 − 493. doi: 10.1016/j.jhazmat.2007.09.077 [4] 裴建芳. 沙河市生活垃圾填埋场渗滤液处理工艺设计及运行调试[D]. 石家庄: 河北科技大学, 2016. [5] 刘会虎, 桑树勋, 曹丽文, 等. 模拟酸雨条件下垃圾填埋的重金属地球化学迁移模型—以徐州为例[J]. 地球与环境, 2009, 37(2): 118 − 125. [6] 杜安静. 臭氧组合工艺深度处理焚烧垃圾渗滤液的研究[D]. 上海: 上海师范大学, 2015. [7] 王飞, 沈建兵, 王岩松. MBR工艺处理垃圾渗滤液—以河源市七寨生活垃圾卫生填埋场工程为例[J]. 广东化工, 2015, 42(6): 137 − 139. doi: 10.3969/j.issn.1007-1865.2015.06.069 [8] MAYNARD H E, OUKI S K, WILLIAMS S C. Tertiary lagoons: A review of removal mechanisms and performance[J]. Water Research, 1999, 33(1): 1 − 13. doi: 10.1016/S0043-1354(98)00198-5 [9] MEHMOOD M K, ADETUTU E, NEDWELL D B, et al. In situ microbial treatment of landfill leachate using aerated lagoons[J]. Bioresource Technology, 2009, 100(10): 2741 − 2744. doi: 10.1016/j.biortech.2008.11.031 [10] LOUKIDOU M X, ZOUBOULIS A. I. Comparison of two biological treatment processes using attached-growth biomass for sanitary landfi ll leachate treatment[J]. Environmental Pollution, 2001, 111(2): 273 − 281. doi: 10.1016/S0269-7491(00)00069-5 [11] HOILIJOKI T H, KETTUNEN R H, RINTALA J A. Nitrification of anaerobically pretreated municipal landfill leachate at low temperature[J]. Water Research, 2000, 34(5): 1435 − 1446. doi: 10.1016/S0043-1354(99)00278-X [12] LEMA J M, MENDEZ R, BLAZQUEZ R. Characteristics of Landfill Leachates and Alternatives for Their Treatment-a Review[J]. Water Air and Soil Pollution, 1988, 40(3−4): 223 − 250. [13] LO I M C. Characteristics and treatment of leachates from domestic landfills[J]. Environment International, 1996, 22(4): 433 − 442. doi: 10.1016/0160-4120(96)00031-1 [14] KNOX K. Leachate Treatment with Nitrification of Ammonia[J]. Water Research, 1985, 19(7): 895 − 904. doi: 10.1016/0043-1354(85)90148-4 [15] PICULELL M, WELANDER T, JONSSON K. Organic removal activity in biofilm and suspended biomass fractions of MBBR systems[J]. Water Science and Technology, 2014, 69(1): 55 − 61. doi: 10.2166/wst.2013.552 [16] HORAN N J, GOHAR H, HILL B. Application of a granular activated carbon-biological fluidised bed for the treatment of landfill leachates containing high concentrations of ammonia[J]. Water Science and Technology, 1997, 36(2): 369 − 375. [17] GUNAY A, KARADAG D, TOSUN I, et al. Combining Anerobic Degradation and Chemical Precipitation for the Treatment of High Strength, Strong Nitrogenous Landfill Leachate[J]. Clean-Soil Air Water, 2008, 36(10−11): 887 − 892. doi: 10.1002/clen.200700201 [18] UYGUR A, KARGI F. Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor[J]. Journal of Environmental Management, 2004, 71(1): 9 − 14. doi: 10.1016/j.jenvman.2004.01.002 [19] LU T, GEORGE B, ZHAO H, et al. A case study of coupling upflow anaerobic sludge blanket (UASB) and ANITA (TM) Mox process to treat high-strength landfill leachate[J]. Water Science and Technology, 2016, 73(3): 662 − 668. doi: 10.2166/wst.2015.536 [20] HENRY J. G, PRASAD D, YOUNG H. Removal of Organics from Leachates by Anaerobic Filter[J]. Water Research, 1987, 21(11): 1395 − 1399. doi: 10.1016/0043-1354(87)90015-7 [21] LEITE V D, PAREDES J M. R, DE SOUSA T A T, et al. Ammoniacal Nitrogen Stripping From Landfill Leachate at Open Horizontal Flow Reactors[J]. Water Environment Research, 2018, 90(5): 387 − 394. doi: 10.2175/106143017X15131012152942 [22] MONJE-RAMIREZ I., VELÁSQUEZ M. T. O. d. Removal and transfo rmation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes[J]. Water Research, 2004, 38(9): 2359 − 2367. doi: 10.1016/j.watres.2004.02.011 [23] ZOUBOULIS A. I, CHAI X. L, KATSOYIANNIS I. A. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates[J]. Journal of Environmental Management, 2004, 70(1): 35 − 41. [24] SILVA A C, DEZOTTI M, L SANT'ANNA G, Treatment and detoxication of a sanitary landfill leachate[J]. Chemosphere, 2004, 55(2): 207-214. [25] SCHULTE P, BAYER A, KUHN F, et al. H2O2/O3, H2O2/UV and H2O2/Fe2+ Processes for the Oxidation of Hazardous Wastes[J]. Ozone-Science & Engineering, 1995, 17(2): 119 − 134. [26] QURESHI T. I, KIM H. T, KIM Y. J. UV-catalytic treatment of municipal solid-waste landfill leachate with hydrogen peroxide and ozone oxidation[J]. Chinese Journal of Chemical Engineering, 2002, 10(4): 444 − 449. [27] SANCHIS S, MESCHEDE-ANGLADA L, SERRA A, et al. Solar photo-Fenton with simultaneous addition of ozone for the treatment of real industrial wastewaters[J]. Water Science and Technology, 2018, 77(10): 2497 − 2508. doi: 10.2166/wst.2018.209 [28] LOPEZ A, PAGANO M, VOLPE A, et al. Fenton’ s pre-treatment of mature landfill leachate[J]. Chemosphere, 2004, 54(7): 1005 − 1010. doi: 10.1016/j.chemosphere.2003.09.015 [29] 胡燕萍. 回灌法处理垃圾渗滤液膜浓缩液的研究进展[J]. 节能, 2018, 37(7): 101 − 102. [30] 王东梅, 刘丹, 刘庆梅, 等. 渗滤液反渗透浓缩液回灌出水水质变化规律的研究[J]. 环境科学, 2014, 35(7): 2822 − 2828. [31] SILVESTRINI N. E. C, MAINE M. A, HADAD H. R, et al. Effect of fe eding strategy on the performance of a pilot scale vertical flow wetland for the treatment of landfill leachate[J]. Science of the Total Environment, 2019, 648: 542 − 549. doi: 10.1016/j.scitotenv.2018.08.132 [32] MEKY N, FUJII M, TAWFIK A. Treatment of hypersaline hazardous landfill leachate using a baffled constructed wetland system: effect of granular packing media and vegetation[J]. Environmental Technology, 2019, 40(4): 518 − 528. doi: 10.1080/09593330.2017.1397764 [33] 陈少华, 刘俊新. 垃圾渗滤液中有机物分子量的分布及在MBR系统中的变化[J]. 环境化学, 2005(2): 153 − 157. doi: 10.3321/j.issn:0254-6108.2005.02.009 [34] 欧阳衡. 城市垃圾填埋场渗滤液处理工艺试验研究[D]. 长沙: 湖南大学, 2005. [35] 高新, 蔡斌, 周俊, 等. 水质均衡-外置式MBR-NF/RO工艺在长沙市垃圾渗滤液处理工程中的应用[J]. 给水排水, 2017, 53(10): 58 − 61. doi: 10.3969/j.issn.1002-8471.2017.10.014 [36] 李北涛. 垃圾渗滤液处理技术应用研究[D]. 武汉: 华中科技大学, 2008. [37] 高用贵. “化学软化+反渗透”法处理垃圾焚烧厂渗滤液中试研究[D]. 北京: 清华大学, 2013. [38] YU T, QI R, LI D, et al. Nitrifier characteristics in submerged membrane bioreactors under different sludge retention times[J]. Water Research, 2010, 44(9): 2823 − 2830. doi: 10.1016/j.watres.2010.02.021 [39] JUDD S, JUDD C, Chapter 3-Design, Operation and Maintenance, The MBR Book(Second Edition)[M], Oxford, Butterworth-Heinemann, 2011: 209-288. [40] 杨利. 膜生物反应器(MBR) +反渗透(RO)处理垃圾渗滤液试验研究[D]. 长沙: 湖南大学, 2011. [41] 陈志伟. 微氧活性污泥-Fenton-AF-BAF组合工艺对垃圾渗滤液处理的研究[D]. 广州: 华南理工大学, 2011. [42] 汪晓军, 顾晓扬, 简磊. 垃圾渗滤液处理方法分析与比较[C]//2013年全国高浓度污水与垃圾渗滤液处理最佳技术应用交流峰会论文集, 北京: 2013: 177-187. [43] 杜昱, 岳峥, 吕国庆, 等. 垃圾渗滤液处理系统内置式膜和外置式膜比较[J]. 中国给水排水, 2015, 31(20): 26 − 29. [44] 左俊芳, 宋延冬, 王晶. 碟管式反渗透(DTRO)技术在垃圾渗滤液处理中的应用[J]. 膜科学与技术, 2011, 31(2): 110 − 115. doi: 10.3969/j.issn.1007-8924.2011.02.021 [45] 杜昱, 岳峥, 吕国庆, 等. 应用于垃圾渗滤液处理系统的内置式膜和外置式膜比较[C]//中国土木工程学会水工业分会排水委员会. 全国排水委员会2015年年会, 杭州: 2015: 6. [46] 艾恒雨, 孟棒棒, 李娜, 等. 我国垃圾渗滤液膜浓缩液处理现状与污染控制建议[J]. 环境工程技术学报, 2016, 6(6): 553 − 558. doi: 10.3969/j.issn.1674-991X.2016.06.080 [47] SCHMIDT I, SLIEKERS O, SCHMID M, et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews, 2003, 27(4): 481 − 492. doi: 10.1016/S0168-6445(03)00039-1 [48] AZARI M, WALTER U, REKERS V, et al. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm[J]. Chemosphere, 2017, 174: 117 − 126. doi: 10.1016/j.chemosphere.2017.01.123 [49] WENJIE Z, HUAQIN W, JOSEPH D R, et al. Granular Activated Carbon as Nucleus for Formation of Anammox Granules in an Expanded Granular-Sludge-Bed Reactor[J]. Global Nest Journal, 2015, 17(3): 508 − 514. doi: 10.30955/gnj.001444 [50] CHRISTENSSON M, EKSTROM S, CHAN A A, et al. Experience from start-ups of the first ANITA Mox Plants[J]. Water Science and Technology, 2013, 67(12): 2677 − 2684. doi: 10.2166/wst.2013.156 [51] WINKLER M. K. H, KLEEREBEZEM R, VAN LOOSDRECHT M. C. M. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures[J]. Water Research, 2012, 46(1): 136 − 144. doi: 10.1016/j.watres.2011.10.034 [52] 邱家洲, 王国华, 徐品虎, 等. 臭氧高级氧化组合技术处理垃圾渗滤液达标[J]. 中国给水排水, 2011, 27(23): 104 − 108. [53] 王东梅, 刘丹, 龚正君, 等. Fenton氧化-絮凝-吸附法处理垃圾渗滤液反渗透浓缩液[J]. 科学技术与工程, 2013, 13(18): 5423 − 5426. doi: 10.3969/j.issn.1671-1815.2013.18.065 [54] SABOUR M R, AMIRI A. Polluting potential of post-Fenton products in landfill leachate treatment[J]. Global Journal of Environmental Science and Management-Gjesm, 2017, 3(2): 177 − 186.