-
随着时代的发展,我国许多城市以湖泊、水库等作为饮用水水源,然而大规模的藻类水华现象不仅严重破坏生态平衡,还对水质安全带来了严重的威胁[1]。铜绿微囊藻是水华现象的优势藻种,藻细胞及生长过程中分泌的有机物是主要的消毒副产物前驱体[2],并且可能产生大量的藻毒素,危害人体的身体健康,得到了社会广泛的关注。藻类有机质(AOM)可能是水华现象和浮游植物数量增加的结果,是构成藻类系统的重要组成部分。文献[3]介绍了AOM通过代谢排泄在细胞外形成胞外有机物(EOM)以及细胞自溶在细胞内形成的胞内有机物(IOM)的研究内容。目前,常见的除藻工艺有混凝-沉淀、混凝-气浮和膜过滤等[4]。氯气、高锰酸钾等预氧化方法进一步改善混凝除藻效果[5],但是研究表明氧化剂投加过量会导致藻细胞破裂,IOM大量释放,进一步加大对水质安全的威胁。EOM作为藻细胞的代谢产物,主要由蛋白质、多糖和类腐殖酸物质组成,对藻细胞脱稳和去除具有重要影响[1]。
芬顿反应是目前公认的最有效的去除有机物方法之一[6],该反应是在酸性条件下投加七水合硫酸亚铁(FeSO4·7H2O)和过氧化氢(H2O2),Fe2+氧化为Fe3+,生成具有较强氧化能力的羟基自由基(·OH),攻击氧化有机物,从而使有机物得到降解[7]。由于反应产生的Fe3+通常作为混凝剂,因此芬顿反应在处理过程中具有氧化与混凝的双重功能。此外,铁是一种非常丰富和无毒的元素,过氧化氢易于处理且对环境危害较小[8]。
文献[9]报道,EOM与混凝剂结合有助于网捕卷扫,起到较好的助凝效果。因此,深刻认识混凝过程对芬顿反应去除EOM的影响,对于进一步优化除藻工艺以及降低藻类及其代谢产物对水质安全带来的风险有重要意义。
本文以铜绿微囊藻为对象,研究Fe2+/H2O2摩尔比和Fe2+投加量对芬顿反应去除EOM的影响以及对比研究芬顿混凝反应与铁盐混凝反应对EOM的去除效果。采用总有机碳测定仪(TOC)、紫外-分光光度计、激光粒径分析仪、扫描电镜(SEM)、高效体积排阻色谱(HPSEC)和三维荧光(EEM)等仪器对芬顿-混凝反应去除藻类EOM的机理做了进一步研究分析。
芬顿-混凝反应对藻类胞外有机物去除机制研究
Study on Mechanism of Removal of Extracellular Organic Matter from Algae by Fenton-coagulation Reaction
-
摘要: 文章探究不同反应条件下芬顿-混凝反应与铁盐(Fe2(SO4)3)混凝反应对铜绿微囊藻胞外有机物(EOM)的去除效果。结果表明,在室温,pH=3,Fe2+/H2O2摩尔比为1∶1时,EOM的去除率达到最佳。Fe2+投加量为5 mmol/L时,TOC、UV254去除率分别达到70%、34%。通过三维荧光(EEM)与分子量分布(HPSEC)分析表明,藻类EOM中主要成分是亲水性大分子多糖和蛋白质,其次是疏水性类腐殖酸物质。单独的铁盐混凝反应表明混凝过程促进了芬顿反应对EOM的去除,EOM中亲水性大分子量物质的去除率很大程度是由Fe2+氧化为Fe3+通过混凝过程贡献。此外,在芬顿反应处理EOM过程中不同时间点絮体粒径受Fe2+投加量影响较大,形成的絮体粒径越小,TOC去除率越高。Abstract: This paper investigated the effect of Fenton-coagulation reaction and the iron salt (Fe2(SO4)3) coagulation reaction on the removal of extracellular organic matter (EOM) from Microcystis aeruginosa under different reaction conditions. The results showed that the removal rate of EOM was the best with room temperature and pH=3 as well as a 1:1 molar ratio of Fe2+/H2O2. The TOC and UV254 removal rates were 70% and 34% respectively with the Fe2+ dosage of 5mmol/L. Three-dimensional fluorescence (EEM) and high-performance size-exclusion chromatography (HPSEC) analysis indicated that the main components of algae EOM were hydrophilic macromolecular polysaccharides and proteins, followed by hydrophobic humic acid-like substances. The individual iron salt coagulation indicated that the coagulation process enhanced the Fenton reaction to remove EOM. The removal rate of hydrophilic large molecular weight substances in EOM was greatly contributed by the oxidation of Fe2+ to Fe3+ through the coagulation process. In addition, the particle size of the floc was greatly affected by Fe2+ dosage at different time in the EOM treatment process by Fenton reaction, the smaller particle size of the floc formed, the higher the removal rate of TOC.
-
Key words:
- EOM /
- Fenton Reaction /
- Coagulation /
- Particle Size of Floc /
- TOC
-
表 1 原水水质指标参数
pH UV254/cm−1 TOC/mg·L−1 SUVA OD680 7.86 0.0529 5.664 0.94 0.2 表 2 不同反应条件三维荧光强度区域积分
反应条件 区域分布 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 原EOM 16 919.6 10 312.2 18 534.8 94 998.9 285 793.1 Fe2+/H2O2=1∶1 9 246.5 4 095.3 4 860.2 39 854.3 56 160.2 Fe2+投加量5 mmol·L−1 9 071.2 5 600.0 4 089.1 31 564.4 21 234.7 芬顿混凝反应 8 888.3 5 255.5 3 888.5 29 134.5 17 702.9 铁盐混凝25 min 11 649.5 8 402.4 12 940.6 50 924.1 174 451.1 铁盐混凝45 min 10 113.3 8 005.4 12 370.1 45 322.8 168 213.8 -
[1] QI J, LAN H, LIU R, et al. Prechlorination of algae-laden water: The effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation[J]. Water Research, 2016, 102: 221 − 228. doi: 10.1016/j.watres.2016.06.039 [2] HENDERSON R, PARSONS S A, JEFFERON B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae[J]. Water Research, 2008, 42(8/9): 1827 − 1845. [3] HENDERON R K, BAKER A, PARSONS S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms[J]. Water Research, 2008, 42(13): 3435 − 3445. doi: 10.1016/j.watres.2007.10.032 [4] 张普, 乔俊莲, 王国强, 等. 聚二甲基二烯丙基氯化铵对铜绿微囊藻的去除效果研究[J]. 水处理技术, 2010, 36(11): 15 − 18. [5] 马敏, 刘锐平, 刘会娟, 等. 预氯化对铝盐混凝铜绿微囊藻过程中溶解性有机物和残余铝的影响[J]. 环境科学学报, 2014, 34(1): 73 − 78. [6] SANAYE S V, PISE N M, PAWAR A P, et al. Evaluation of antioxidant activities in captive-bred cultured yellow seahorse, Hippocampus kuda (Bleeker, 1852)[J]. Aquaculture, 2014, 434: 100 − 107. doi: 10.1016/j.aquaculture.2014.08.007 [7] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1 − 84. doi: 10.1080/10643380500326564 [8] BADAWY M I, ALI M E M. Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater[J]. Journal of Hazardous Materials, 2006, 136(3): 961 − 966. doi: 10.1016/j.jhazmat.2006.01.042 [9] HENDERSON R K, PARSONS S A, JEFFERON B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae[J]. Water Research, 2010, 44(12): 3617 − 3624. doi: 10.1016/j.watres.2010.04.016 [10] QU F, LIANG H, WANG Z, et al. Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: influences of interfacial characteristics of foulants and fouling mechanisms[J]. Water Research, 2012, 46(5): 1490 − 1500. doi: 10.1016/j.watres.2011.11.051 [11] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701 − 5710. [12] 吴彦瑜, 覃芳慧, 赖杨兰, 等. Fenton试剂对垃圾渗滤液中腐殖酸的去除特性[J]. 环境科学研究, 2010, 23(1): 94 − 99. [13] DENG Y. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate[J]. Journal of Hazardous Materials, 2007, 146(1/2): 334 − 340. [14] HENDERSON R K, BAKER A, MURPHY K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: a review[J]. Water research, 2009, 43(4): 863 − 881. doi: 10.1016/j.watres.2008.11.027 [15] LYKO S, WINTGENS T, Al-HALBOUNI D, et al. Long-term monitoring of a full-scale municipal membrane bioreactor-Characterisation of foulants and operational performance[J]. Journal of Membrane Science, 2008, 317(1/2): 78 − 87. [16] SUN J H, SUN S P, FAN M H, et al. A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process[J]. Journal of Hazardous Materials, 2007, 148(1/2): 172 − 177. [17] PARK S, YOON T. The effects of iron species and mineral particles on advanced oxidation processes for the removal of humic acids[J]. Desalination, 2007, 208(1−3): 181 − 191. doi: 10.1016/j.desal.2006.02.080 [18] 周玲玲, 张永吉, 孙丽华, 等. 铁盐和铝盐混凝对水中天然有机物的去除特性研究[J]. 环境科学, 2008, 29(5): 1187 − 1191. doi: 10.3321/j.issn:0250-3301.2008.05.006 [19] 丰桂珍, 董秉直. 水中藻类溶解性有机物特性研究[J]. 环境科学与技术, 2016, 39(11): 144 − 149. [20] ZHANG W, YANG P, YANG X, et al. Insights into the respective role of acidification and oxidation for enhancing anaerobic digested sludge dewatering performance with Fenton process[J]. Bioresource Technology, 2015, 181: 247 − 253. doi: 10.1016/j.biortech.2015.01.003 [21] JARVIS P, JEFFERSON B, PARSONS S A. Breakage, regrowth, and fractal nature of natural organic matter flocs[J]. Envionenmal Science & Technology, 2005, 39(7): 2307 − 2314. [22] 徐磊, 俞文正, 梁亮, 等. 天然有机物对混凝效果影响机制及絮体特性分析[J]. 环境科学, 2013, 34(11): 4290 − 4294. [23] MATSUO T, UNNO H. Closure to“Forces Acting on Floc and Strength of Floc” by Tomonori Matsuo and Hideaki Unno (June, 1981)[J]. Journal of Envionenmal Engineering, 1983, 109(1): 257 − 263. doi: 10.1061/(ASCE)0733-9372(1983)109:1(257)