-
地表水是我国东部河网地区饮用水的主要来源,包括河流、湖泊、水库等。虽然水量丰富,但上述水源容易受到周边工农业生产过程排放的有机污染物的威胁。其中,农药、全氟化合物等微量有机污染物(TrOCs,trace organic contaminants)浓度虽低,但由于具有较高的生物毒性、环境持久性和生物累积性,成为当前水处理行业的关注热点。对我国东部地区饮用水源地52个采样点的112种微量有机污染物进行了调查,发现水中共检出104种化学物质,检出浓度范围为0~156.5 ng·L−1[1]。饮用水带来的TrOCs暴露可能会对人体发育代谢、免疫功能、内分泌功能等产生不利影响。另一方面,饮用水厂普遍采用的氯消毒工艺可能诱导水中有机物反应生成消毒副产物(DBPs,disinfection by-products),增加人体罹患膀胱癌和先天性畸形等重大疾病的风险[2]。目前我国饮用水厂净水工艺仍以混凝-沉淀-过滤-消毒的常规工艺为主,对水源水中出现的消毒副产物前体物、农药、工业化学品等控制效果不佳。因此,在常规处理的基础上增加深度处理单元,是保障和提升河网地区饮用水水质的重要途径。近年来,基于紫外的高级氧化技术成为水深度处理领域的研究热点,包括紫外/过氧化氢、紫外/过硫酸盐、紫外/氯等[3]。次氯酸钠作为饮用水厂常用的消毒剂,其与紫外线组成的紫外/氯高级氧化工艺具有氧化效率高、氧化剂余量可直接利用等优点,成为饮用水深度处理工艺的重要选择[4-6]。然而,有关紫外/氯工艺在饮用水厂现场中试及以上规模的研究还比较少,实际水质条件下不同工艺参数对有机物降解效率的影响及机理还有待探究。尤其是水中消毒副产物(生成势)的变化及工艺对全氟化合物等新污染物的作用效果值得关注。本研究采用紫外/氯中试系统对浙江某饮用水厂滤后水进行深度处理,考察了该工艺对水中TrOCs、DBPs和消毒副产物生成势(DBPsFP,formation potential of DBPs)等化学风险物质的控制效果,为其在饮用水厂的推广应用提供技术支持。
中试紫外/氯工艺对饮用水中微量有机污染物及消毒副产物的削减
Elimination of trace organic contaminants and disinfection by-products in drinking water by a pilot-scale UV/chlorine process
-
摘要: 针对水源微污染等问题,在某饮用水厂开展紫外/氯高级氧化工艺深度处理滤后水的中试研究,探究不同工艺条件下水中微量有机污染物(TrOCs,trace organic contaminants)的去除及消毒副产物(DBPs,disinfection by-products)的控制机制。结果表明,紫外/氯工艺可高效去除滤后水中的异丙甲草胺、多菌灵、吡虫啉等农药,上述基础工况下其总体去除率为87.1%。提高紫外剂量对各类农药去除率的提升效果优于增大加氯量。水中全氟化合物(PFCs,perfluorinated compounds)的去除效率一般,其中全氟辛酸(PFOA,Perfluorooctanoic acid)去除率(46.4%)相对最高,而部分工况下全氟己酸(PFHxA,perfluorocaproic acid)等出现浓度升高的情况,说明在紫外/氯高级氧化过程中可能存在长链PFCs向短链PFCs转化的降解途径。紫外/氯高级氧化过程伴随着一定量的三氯甲烷(TCM,trichloromethane)等DBPs的生成(≤ 8.8 μg·L−1),但工艺出水的消毒副产物生成势(DBPsFP,formation potential of DBPs)下降明显,且加氯量越高消毒副产物的生成势越低,其最低值(12.9 μg·L−1)相较于处理前降幅达到66.3%。对滤后水中常规有机物指标进行分析,发现紫外/氯工艺可以强化去除滤后水中的芳香性和荧光性有机物,工艺出水的比紫外吸光度(SUVA)降至1.0 L·(mg·m)−1以下,3类荧光组分的去除率在41.8%~71.6%。相关性分析结果表明,紫外/氯处理过程中DBPs的生成及后续DBPsFP的大小主要取决于水中荧光性/芳香性有机物组分的含量。Abstract: Against the background of water sources being contaminated by micropollutants, a pilot-scale UV/chlorine system was set up in a drinking water treatment plant to explore the efficacy and mechanism of trace organic contaminants removal as well as the elimination of disinfection by-products and the formation potentials under different process conditions. Results show that the UV/chlorine process was efficient in removing metolachlor, carbendazim, imidacloprid and other pesticides found in the sand-filtered water. A gross removal efficiency of 87.1% was achieved under the benchmark operation condition, while an elevated UV fluence was more beneficial than an increased chlorine dose. The removal of perfluorinated compounds (PFCs) by UV/chlorine was relatively low with the largest removal efficiency found with perfluorooctanoic acid (PFOA), which was 46.4%. The content of perfluorohexanoic acid (PFHxA) was found to increase under some operation conditions. This indicates that the transformation of long-chain PFCs to short-chain PFCs could exist during the process. Meanwhile, disinfection by-products (DBPs) consisting mainly of trichloromethane (TCM) were generated with a maximum concentration of 8.8 μg·L−1, yet the disinfection by-products formation potential (DBPsFP) of the effluent decreased significantly. The minimum DBPsFP occurred with the largest chlorine dose, which was 12.9 μg·L−1, 66.3% lower than that before UV/chlorine treatment. Moreover, the changes in dissolved organic matter in the sand-filtered water were characterized with parameters such as the UV absorbance at 254 nm (UV254) and fluorescence excitation emission matrix. The aromatic and fluorescent constitutions of the organics were reduced significantly by UV/chlorine treatment as evidenced by the lowered SUVA (< 1.0 L·mg−1·m−1) and the prominent removal efficiencies of the three identified fluorescent compositions (41.8%~71.6%). A correlation analysis was conducted which revealed the strong correlations between the formed DBPs or the subsequent DBPsFP and the contents of aromatic and fluorescent constitutions in the water.
-
表 1 实验工况参数
Table 1. Parameters of experimental conditions
工况 紫外功率
/(mW·cm−2)加氯量/(mg·L−1) 进水流量/(m3·h−1) SC 11.5 5 3 UV1 11.2 5 3 UV2 10.8 5 3 UV3 9.1 5 3 Cl0 11.5 0 3 Cl10 11.5 10 3 Cl15 11.5 15 3 Q1 11.5 5 1 Q2 11.5 5 2 Q4 11.5 5 4 注:SC表示标准工况;UV表示紫外功率;Cl表示加氯量;Q表示进水流量。 -
[1] MA S J, DONG H Y, LI D, et al. Priority screening of contaminants of emerging concern in drinking water sources of eastern China: Assessing risks based on exposure-activity ratios (EARs)[J]. Science of the Total Environment, 2023, 896: 164881. [2] WU S N, DONG H Y, ZHANG L P, et al. Formation characteristics and risk assessment of disinfection by-products in drinking water in two of China’s largest basins: Yangtze River Basin Versus Yellow River Basin[J]. ACS ES& T Water, 2024, 4(1): 79-90. [3] 李慧琴. 基于紫外的高级氧化技术在水处理中的应用进展[J]. 化工设计通讯, 2020, 46(11): 28-30. doi: 10.3969/j.issn.1003-6490.2020.11.015 [4] 张淼, 李文涛, 连军锋, 等. 紫外/氯工艺去除煤化工高盐废水中有机物的研究[J]. 中国给水排水, 2021, 37(21): 82-88. [5] ZHOU Y, CHENG F, HE D, et al. Effect of UV/chlorine treatment on photophysical and photochemical properties of dissolved organic matter[J]. Water Research, 2021, 192(19): 116857. [6] YIN R, SHANG C. Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorptiont[J]. Water Research, 2020, 185: 116297. doi: 10.1016/j.watres.2020.116297 [7] WANG Y, DONG H, WU Z, et al. UV activated monochloramine promotes metribuzin degradation and disinfection by-products formation[J]. Chemical Engineering Journal, 2019, 385: 123846. [8] WU S N, YUAN T T, FU W, et al. Perfluorinated compound correlation between human serum and drinking water: Is drinking water a significant contributor? [J]. Science of the Total Environment, 873: 162471. [9] 顾允轩, 仇付国, 王大伟, 等. 典型农业小流域中29种农药类微污染物检出、时空变化与生态风险评估[J]. 生态毒理学报, 2022, 17(3): 326-338. doi: 10.7524/AJE.1673-5897.20210815001 [10] WU C L, SHEMER H, Linden K G. Photodegradation of Metolachlor Applying UV and UV/H2O2[J]. Journal of Agricultural and Food Chemistry, 2007(10): 55. [11] ACERO J L, REAL J F, BENITEZ J F, et al. Degradation of neonicotinoids by UV irradiation: Kinetics and effect of real water constituents[J]. Separation and Purification Technology, 2019, 211: 218-226. doi: 10.1016/j.seppur.2018.09.076 [12] BOLTON J R, STEFAN M I. Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions[J]. Research on Chemical Intermediates, 2002, 28(7-9): 857-870. doi: 10.1163/15685670260469474 [13] FANG J, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868. [14] STARLING V C V. M, SOUZA P P, PERSON L A, et al. Intensification of UV-C treatment to remove emerging contaminants by UV-C/H2O2 and UV-C/S2O82-: Susceptibility to photolysis and investigation of acute toxicity[J]. Chemical Engineering Journal, 2019, 376: 120856. doi: 10.1016/j.cej.2019.01.135 [15] TAKASHI Y, YUKIO N, SHIN-ICHI S, et al. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol[J]. Environmental Science & Technology, 2007, 41(16): 5660-5. [16] 刘明, 黄妍妍, 史金玉, 等. 真空紫外/紫外/过硫酸盐工艺降解水中全氟辛酸[J]. 环境工程学报, 2023, 17(5): 1409-1417. doi: 10.12030/j.cjee.202301039 [17] METZ J, ZUO P X, WANG B, et al. Perfluorooctanoic acid Degradation by UV/ChlorineJordin[J]. Environmental Science & Technology Letters, 2022, 9(8): 673-679. [18] CAO M H, WANG B B, YU H S, et al. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 1143-1146. [19] VENKATESAN A K, LEE C S, CHRISTOPHER G, et al. Hydroxyl-radical based advanced oxidation processes can increase perfluoroalkyl substances beyond drinking water standards: Results from a pilot study.[J]. Science of the Total Environment, 2022, 847: 157577. doi: 10.1016/j.scitotenv.2022.157577 [20] KRISTIANA I, HERVE G, JOLL C, et al. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates[J]. Water Research, 2009, 43(17): 4177-4186. doi: 10.1016/j.watres.2009.06.044 [21] SUN J, KONG D, AGHDAM E, et al. The influence of the UV/chlorine advanced oxidation of natural organic matter for micropollutant degradation on the formation of DBPs and toxicity during post-chlorination[J]. Chemical Engineering Journal, 2019, 373: 870-879. doi: 10.1016/j.cej.2019.05.096 [22] ISHII S K L, BOYER T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review[J]. Environmental Science & Technology, 2012, 46(4): 2006-17. [23] XU X T, KANG J, SHEN J M, et al. EEM–PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China[J]. Science of the Total Environment, 2021, 774(1): 145297.