-
我国城市污水以及工业园区废水普遍存在碳氮比低的问题,常需投加补充碳源提高脱氮效果,增加了污水厂的运行成本。常用商品碳源有甲醇、乙酸钠、葡萄糖等[1]。这类碳源需要长期持续投加,投加量不足时出水中有残留硝态氮;投加过量时出水中残留碳源会造成二次污染[2]。近年来投加固态缓释碳源成为新的发展方向[3]。我国工业园区有机固废资源化利用率普遍较低,根据国家统计局发布的《2 022年中国统计年鉴》,全国一般工业固废综合利用率为57%。利用有机固废制备缓释碳源,在实现有机固废减量化和资源化的同时提高园区污水厂脱氮效果,降低污水处理成本,具有较好的应用价值和科学意义。
复合缓释碳源主要为骨架材料、有机底物、海藻酸钠(sodium alginate,SA)和氯化钙通过化学交联形成。常用的骨架材料有聚乙烯醇(polyvinyl alcohol, PVA)、聚乳酸(polylactic acid, PLA)、聚己内酯(polycaprolactone, PCL)等[4-5]。其中PCL多用于医学用途,价格相对较高;PLA强度较低,且相容性较差;PVA价格相对较低,机械强度高,因此,采用PVA为骨架材料的研究相对较多[6]。缓释碳源常用的有机底物有花生壳、淀粉、玉米芯等[7-9]。此外,在固体缓释碳源制备过程中加入乳化剂可以调节孔隙度、控制释碳速率、提高缓释效果[10]。用乳化剂发泡法制备的PVA具有均匀、高度贯通的孔隙结构[11]。常见的乳化剂有吐温80(tween80)和司盘80(span80)。
已有研究表明,复合缓释碳源具有较好的反硝化效果。XIONG等[7]利用花生壳做底物,PCL和PVA做骨架材料,与SA进行交联,花生壳:PCL:PVA:SA质量浓度比例为8:8:8:1制备的缓释碳源,反硝化速率达到0.178 mg·(L·h)−1,硝酸盐去除率为99.9%,出水溶解性有机碳(dissolved organic carbon, DOC)为38 mg·L−1。唐丹琦等[12]以淀粉为底物,PLA为骨架材料制备缓释碳源。按照淀粉:PLA=5 g·L−1:5 g·L−1的比例制备,反硝化速率为1.03 mg·(L·h)−1,硝酸盐去除率为99.0%,残余化学需氧量(chemical oxygen demand, COD)为 80 mg·L−1。王润众等[10]在醋酸酯淀粉/PVA体系中添加醋酸酯淀粉与PVA总质量5%的span80制备缓释碳源,反硝化速率为0.182 mg·(L·h)−1,硝酸盐去除率为85%,残余COD为16 mg·L−1。
酿酒产业是某些综合型工业园区中重要的产业类型。酒糟是经过第一道压榨工艺压榨,晾干后得到的固体物质,主要由酿酒原料以及在糖化、发酵过程中产生的代谢产物和残留的酵母细胞组分[13],主要成分为淀粉、蛋白质和氨基酸、纤维素、酒精等[14],具有良好的微生物可利用性。目前酒糟主要用途有作为饲料填充料、厌氧消化等[15-16],但缺乏利用酒糟制备缓释碳源的研究,因此本研究以酒糟做有机底物,以PVA-SA为骨架材料制备缓释,并考察其释碳和反硝化性能。研究结果可以为工业园区固废-污水协同治理模式提供参考。
利用工业园区酒糟固废制备复合缓释碳源及其性能评估
Preparation of composite slow-release carbon source from industrial park vinasse solid waste and its performance evaluation
-
摘要: 我国工业园区污水厂进水碳氮比(C/N)普遍较低,常需补充碳源以提高脱氮效果。酒糟富含蛋白质、碳水化合物等有机组分,可生物利用性好,但目前缺乏其作为缓释碳源的研究。本研究以工业园区酒糟固废为原材料,以聚乙烯醇(PVA)、海藻酸钠(SA)为骨架材料,利用低温冷冻化学交联法制备复合缓释碳源,并进行释碳性能和反硝化性能评估。结果表明:通过骨架材料配比以及乳化剂优化研究,缓释碳源的快速释放期可延长到3 d,此阶段释碳过程为骨架溶蚀机制,单位质量缓释碳源的累积释碳量(以化学需氧量,即COD计)可达到1 089 mg·(g·L)−1。在酒糟用量为10 g·L−1,骨架材料配比为PVA:SA=8:1,乳化剂为1.0% span80条件下制备的缓释碳源在投加量为0.19 g·L−1,初始硝态氮(NO3−-N)为(41.53±0.1) mg·L−1时,反硝化出水溶解性有机物(DOM)的腐殖化程度最低、分子质量最小、芳香环取代基种类和取代基程度最低,总氮去除率为99.2%,反硝化速率达到4.08 mg·(L·h)−1,为最佳缓释碳源。本研究结果可为工业园区的污水-固废协同治理提供参考。Abstract: The ratio of carbon to nitrogen(C/N) in influent of wastewater treatment plants of industrial parks in China is generally too low to denitrification, and supplementary carbon sources are often required to improve the nitrogen removal performance. Vinasse solid waste is rich in organic components such as proteins and carbohydrates, which have a good biodegradability. However, there is still a lack of research on its use as a slow-release carbon source. In this study, vinasse solid waste from an industrial park was used as raw material, and polyvinyl alcohol (PVA) and sodium alginate (SA) were used as hybrid scaffold to prepare a slow-release carbon source by the low-temperature freeze chemical cross-linking method. The carbon release and denitrification performance of the material were evaluated. Results showed that the optimization of hybrid scaffold ratio and emulsifier dosage could extend the rapid release period of the slow-release carbon source to 3 d. At this stage, the process of carbon release was governed by the framework dissolution mechanism. The cumulative carbon release of the slow-release carbon source (measured by chemical oxygen demand, COD) was 1 089 mg·(g·L)−1. The optimal slow-release carbon source was prepared under the conditions of 10 g·L−1 vinasse solid waste, PVA:SA ratio of 8:1, and 1.0% span80 as emulsifier. During the denitrification process, at slow-release carbon source dosage of 0.19 g·L−1 and (41.53±0.1) mg·L−1 of initial nitrate nitrogen (NO3−-N), the dissolved organic matter (DOM) of the effluent presented the highest humification degree, the lowest molecular weight, and the least aromatic ring substituent types and degree. The total nitrogen removal rate was 99.2%, and the denitrification rate reached 4.08 mg·(L·h)−1. This study could provide a reference for the collaborative management of wastewater and solid waste in industrial parks.
-
Key words:
- slow-release carbon source /
- hybrid scaffold /
- vinasse /
- carbon release mechanisms /
- denitrification
-
表 1 缓释碳源释碳二级反应动力学
Table 1. Second-order reaction kinetics equation for carbon release of slow-release carbon source
实验组 拟合公式 R2 Cm/(mg·g−1) K/(mg·(h·g·L)−1) T1/2/h 1# 1/c=0.035/t−0.001 1 0.96 828.72 28.46 29.12 2# 1/c=0.039/t−0.001 6 0.96 681.88 25.59 26.65 3# 1/c=0.031/t−0.001 0 0.98 890.04 32.49 27.40 4# 1/c=0.039/t−0.001 5 0.99 809.25 25.73 31.45 5# 1/c=0.035/t−0.001 7 0.97 972.85 28.84 33.74 6# 1/c=0.042/t−0.000 3 0.98 802.44 23.84 33.66 7# 1/c=0.027/t−0.003 4 0.99 858.71 37.22 23.07 8# 1/c=0.025/t−0.003 8 0.98 869.86 40.63 21.41 9# 1/c=0.026/t−0.001 7 0.97 940.21 37.95 24.87 10# 1/c=0.029/t−0.003 5 0.97 987.97 34.63 28.53 11# 1/c=0.022/t−0.001 6 0.99 941.67 45.07 20.90 12# 1/c=0.021/t−0.001 1 0.97 1021.42 48.73 20.96 13# 1/c=0.023/t−0.001 7 0.97 1089.20 43.61 24.98 表 2 Ritger-Peppas方程拟合结果
Table 2. Fitting results of Ritger-Peppas equation
实验组 0~72 h 72~168 h 拟合公式 R2 N 拟合公式 R2 N 1# Mt/M∞=0.013t1.07 0.97 1.068 Mt/M∞=0.69t0.073 0.85 0.073 2# Mt/M∞=0.026t0.90 0.96 0.900 Mt/M∞=0.71t0.069 0.84 0.069 3# Mt/M∞=0.026t0.89 0.95 0.891 Mt/M∞=0.63t0.094 0.80 0.094 4# Mt/M∞=0.021t0.92 0.97 0.925 Mt/M∞=0.55t0.12 0.80 0.120 5# Mt/M∞=0.011t1.09 0.98 1.091 Mt/M∞=0.68t0.077 0.80 0.077 6# Mt/M∞=0.023t0.90 0.91 0.899 Mt/M∞=0.58t0.11 0.82 0.110 7# Mt/M∞=0.014t1.08 0.93 1.080 Mt/M∞=0.76t0.057 0.84 0.057 8# Mt/M∞=0.014t1.09 0.92 1.093 Mt/M∞=0.79t0.048 0.85 0.048 9# Mt/M∞=0.026t0.93 0.90 0.928 Mt/M∞=0.85t0.031 0.85 0.031 10# Mt/M∞=0.015t1.07 0.89 1.068 Mt/M∞=0.84t0.036 0.84 0.036 11# Mt/M∞=0.030t0.89 0.90 0.888 Mt/M∞=0.76t0.057 0.88 0.057 12# Mt/M∞=0.035t0.84 0.92 0.843 Mt/M∞=0.83t0.038 0.88 0.038 13# Mt/M∞=0.019t0.99 0.95 0.991 Mt/M∞=0.80t0.043 0.85 0.043 表 3 释放有机、无机组分及有机组分COD当量占比
Table 3. Release component content and COD equivalent percentage
实验组释放组分质量浓度/(mg·L−1) 有机组分COD当量/% 蛋白质 多糖 Ca2+ Na+ K+ Mg2+ Cl− SO42− 蛋白质 多糖 未知组分 7# 73.4 48.5 168.9 23.5 2.6 0.63 283.2 14.2 3.3 3.1 93.6 8# 81.2 50.2 161.8 22.3 2.0 0.56 265.6 11.5 3.5 3.0 93.5 9# 79.3 51.7 155.7 19.1 2.1 0.56 257.3 10.7 3.4 3.1 93.5 10# 83.7 57.9 148.3 17.1 2.1 0.58 253.7 10.2 3.6 3.6 92.8 11# 84.8 52.4 180.5 20.0 2.4 0.70 290.8 15.7 3.3 2.9 93.8 12# 87.5 54.0 152.6 17.1 1.9 0.58 261.4 11.2 3.2 2.8 94.0 13# 96.3 65.0 159.9 16.3 2.3 0.65 279.1 12.7 3.6 3.4 93.0 -
[1] FERNANDEZ Y, MARANON E, SOONS J, et al. Denitrification of high nitrate concentration wastewater using alternative carbon sources[J]. Journal of Hazardous Materials, 2010, 173(1): 682-688. [2] NISINI E, SANTULLI C, CERUTI A, et al. High speed impact properties of carbon-basalt-flax dhec composites compared with pure carbon fibre composites[J]. Composite Structures, 2018, 192: 165-172. doi: 10.1016/j.compstruct.2018.02.058 [3] VOLOKITA M, ABEHOVICH A, SOARES M, et al. Denitrification of groundwater using cotton as energy source[J]. Water Science Technology, 1996, 34(1): 379-385. [4] 王允, 张旭, 张大奕, 等. 用于地下水原位生物脱氮的缓释碳源材料性能研究[J]. 环境科学, 2008, 29(8): 2183-2188. [5] 刘佳, 沈志强, 周岳溪, 等. 聚己内酯/淀粉共混物和砾石系统反硝化特性[J]. 环境科学研究, 2014, 27(4): 441-446. [6] 蓝梅, 许志欣, 孙文叶, 等. 缓释碳源材料的选择与制备探究[J]. 工业水处理, 2017, 37(2): 24-28. [7] XIONG R, YU X, YU L, et al. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal wwtp[J]. Chemosphere, 2019, 235: 434-439. doi: 10.1016/j.chemosphere.2019.06.198 [8] 沈志强, 周岳溪, 王建龙, 等. 利用淀粉/PCL共混物作为反硝化固体碳源和生物膜载体的研究[J]. 环境工程技术学报, 2014, 4(2): 129-134. [9] LI C, WANG H, YAN G, et al. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source[J]. Journal of Environmental Sciences, 2022, 118: 32-45. doi: 10.1016/j.jes.2021.08.045 [10] 王润众, 郝瑞霞, 赵文莉, 等. 新型缓释碳源的制备及其性能[J]. 环境工程学报, 2016, 10(1): 81-87. [11] 程琳, 邹琴, 邹立扣, 等. 聚乙烯醇及改性聚乙烯醇/明胶多孔支架的体外生物相容性研究[J]. 成都大学学报, 2012, 31(2): 113-116. [12] 唐丹琦, 王娟, 郑天龙, 等. 聚乳酸/淀粉固体缓释碳源生物反硝化研究[J]. 环境科学, 2014, 35(6): 2236-2240. [13] 汪江波, 王浩, 孔博, 等. 黄酒酿造技术研究进展[J]. 酿酒, 2020, 47(6): 26-30. [14] 谢广发, 彭祺, 毛青钟, 等. 《黄酒酿造技术》课程教学探索与实践研究[J]. 酿酒, 2020, 47(3): 28-30. [15] 范恩帝, 蒋梦迎, 冯敏雪, 等. 混菌发酵白酒糟生产含功能成分饲料发酵条件的优化[J]. 生物技术通报, 2021, 37(12): 91-103. [16] 柳珊, 郭春春, 何荣玉, 等. 酒糟厌氧消化产甲烷特性及微生物菌群结构分析[J]. 农业机械学报, 2023, 54: 1-21. [17] 凌宇, 闫国凯, 王海燕, 等. 6种农业废弃物初期碳源及溶解性有机物释放机制[J]. 环境科学, 2021, 42(5): 2422-2431. [18] RITGER P L, PEPPAS N A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices[J]. Journal of Controlled Release, 1987, 5(1): 37-42. doi: 10.1016/0168-3659(87)90035-6 [19] 范振兴, 赵璇, 王建龙, 等. 利用辐照预处理麦秆作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30(4): 1090-1094. [20] 周蜜. 新型多碳源缓释复合材料的制备及其强化低C/N污水脱氮性能的研究[D]. 重庆: 重庆大学, 2021. [21] 国家环境环保总局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002. [22] 宋铁红, 赵凯, 佟娟, 等. 某实际染整废水深度处理过程中无机组分与溶解性有机物的变化[J]. 环境化学, 2022, 41(11): 3482-3492. [23] 薛柯伲. 食品加工废水制备工业园区污水厂补充碳源研究[D]. 邯郸: 河北工程大学, 2022. [24] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [25] XIONG R, YU X, ZHANG Y, et al. Comparison of agricultural wastes and synthetic macromolecules as solid carbon source in treating low carbon nitrogen wastewater[J]. Science of the Total Environment, 2020, 739: 139885. doi: 10.1016/j.scitotenv.2020.139885 [26] LIMA V D O, BARROS V G D, DUDA R M, et al. Anaerobic digestion of vinasse and water treatment plant sludge increases methane production and stability of uasb reactors[J]. Journal of Environmental Management, 2023, 327: 116451. doi: 10.1016/j.jenvman.2022.116451 [27] ZHANG D, LI G, YANG Y S, et al. Bio-geological processes of nitrogen transport and transformation in the aeration zone and aquifer[J]. Hydrological Sciences Journal, 2009, 54(2): 316-326. doi: 10.1623/hysj.54.2.316 [28] 邵兵, 张立秋, 李淑更, 等. 2种缓释碳源材料的释碳特性及脱氮性能研究[J]. 水处理技术, 2020, 46(12): 34-38. [29] YU L, CHENG L, PENG Z, et al. Carbon release mechanism of synthetic and agricultural solid carbon sources[J]. Water and Environment Journal, 2020, 34(S1): 121-130. doi: 10.1111/wej.12511 [30] BRUSCHI M L. Strategies to modify the drug release from pharmaceutical systems[M]. Woodhead Publishing, 2015: 63-86. [31] PEPPAS N A, NARASIMHAN B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems[J]. Journal of Controlled Release, 2014, 190: 75-81. doi: 10.1016/j.jconrel.2014.06.041 [32] KLECH C M, SIMONELLI, A P. Examination of the moving boundaries associated with non-fickian water swelling of glassy gelatin beads: Effect of solution pH[J]. Journal of Membrane Science, 1989, 43: 87-101. doi: 10.1016/S0376-7388(00)82355-8 [33] ATES N, KITIS M, YETIS U, et al. Formation of chlorination by-products in waters with low suva—correlations with suva and differential UV spectroscopy[J]. River Research and Applications, 2007, 41(18): 4139-4148. [34] 周石磊, 孙悦, 张艺冉, 等. 雄安新区-白洋淀冬季冰封期水体溶解性有机物的空间分布、光谱特征及来源解析[J]. 环境科学, 2020, 41(1): 213-223. [35] DUARTE R M B O, PIO C A, DUARTE A C, et al. Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions[J]. Analytica Chimica Acta, 2005, 530(1): 7-14. doi: 10.1016/j.aca.2004.08.049 [36] PEBGHUI L, JIN H. Utilization of UV-vis spectroscopy and related data analyses for dissolved organic matter (dom) studies: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. doi: 10.1080/10643389.2017.1309186 [37] KUMKE M U, SPECHT C H, BRINKMANN T, et al. Alkaline hydrolysis of humic substances – spectroscopic and chromatographic investigations[J]. Chemosphere, 2001, 45(6): 1023-1031. [38] CHEN Y, CHENG J J, CREAMER K S, et al. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. doi: 10.1016/j.biortech.2007.01.057 [39] RAHA A R, WAN M F W N, RICCA R N, et al. Alginate and alginate composites for biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2021, 16(3): 280-306. doi: 10.1016/j.ajps.2020.10.001 [40] ZHANG W, DENG Q, HE Q, et al. A facile synthesis of core-shell/bead-like poly (vinyl alcohol)/alginate@pam with good adsorption capacity, high adaptability and stability towards cu(Ⅱ) removal[J]. Chemical Engineering Journal, 2018, 351: 462-472. doi: 10.1016/j.cej.2018.06.129 [41] HE X, XI B, WEI Z, et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J]. Journal of Hazardous Materials, 2011, 190(1): 293-299. [42] HU X, CHEN H, ZHANG S, et al. Study on performance of carbon source released from fruit shells and the effect on biological denitrification in the advanced treatment[J]. Chemosphere, 2022, 307: 136173. doi: 10.1016/j.chemosphere.2022.136173