-
在全球的水资源储量中,淡水只占2.53%,而在这些淡水资源中,只有13%可被人类直接利用[1]。为了解决淡水资源紧缺问题,除了对现有的水资源保护、合理利用,还应积极开发利用其它水资源[2]。膜电容去离子是一种无需加入任何化学物质的新型脱盐技术,其原理是通过对电极两端施加电压,进水中的盐离子在电场力的作用下通过离子交换膜吸附在电极表面的双电层(electric double layer, EDL)上,出水得到净化,从而达到脱盐的目的[3]。与反渗透[4]、电渗析[5-6]、膜蒸馏[7]、离子交换[8]等传统脱盐方法相比,MCDI表现出装置简单、易操作、电极易再生、成本低,无污染、节能等优势,尤其是在低盐度盐水淡化中的优势更明显。离子交换膜具有高选择性的特点,能够阻碍反离子的通过,可有效避免同离子效应,提高电荷效率[9],且电极上不易发生有机污染[10-11]。除了脱盐,MCDI还实现了选择性去离子、资源回收等功能。目前对MCDI的研究主要集中在以下几个方面:离子迁移储存机制与模型、电极材料[12]、加电方式以及装置构型等[13]。
MCDI为低电压驱动运行,单级装置运行下,脱盐效率低,且出水水质难以达标。为了解决这一难题,很多学者采用了电极堆叠和膜堆叠的方法。LEE等[14]通过对多个电极堆叠的方式,进行了对每个电极都加电的单级和只对边缘电极加电的双极脱盐实验的研究,结果表明双极性堆叠的(capacitive deionization, CDI)电极具有较高的脱盐速率和能量损耗。MA等[15]组建了多对膜装置,比较了1对、2对和3对离子交换膜装置的脱盐性能,研究发现,2对膜的脱盐速率约为一对膜的2倍,3对膜装置的脱盐速度反而不如两对膜装置的,结果表明了靠无限制的膜堆叠提高脱盐性能的方法行不通。电极堆叠[16]和膜堆叠都能够提高脱盐速率,但受到单级装置的限制,其脱盐性能受限。还有一些学者通过MCDI装置串、并联的方法来提高脱盐性能,SALEEM等[17]将CDI技术与反电渗析技术(reverse electrodialysis, RED)相结合,对4个CDI装置进行了串联和并联操作,吸附过程中4个装置并联连接,解吸过程中4个装置串联连接。该工艺通过RED产生的能量能再次用于CDI脱盐,该系统将产水能耗从1.5 kJ·L−1降低到了0.58 kJ·L−1。CHENG等[18]将多个CDI装置串联,提高了电极的吸附性能。MCDI与传统脱盐技术相比,在适度脱盐上具有明显优势,在其他多级串联MCDI研究中,未曾对体系中的单级装置的脱盐过程进行单独调控,本工作创新性地提出通过对体系中的装置单独加电降低运行能耗,并从多角度对脱盐性能进行了优化研究。而且多装置在维护方面也更有优势,且单级装置维修时又不影响其它装置的运行,多级串联对于MCDI脱盐工程化具有深远意义。
本研究采用多级串联MCDI的方法,通过将各级进出水连接,不仅可以达到深度脱盐的目的,而且还能收集不同浓度的出水,以期适应不同需求。还能针对不同盐度的盐水采用不同的处理方式,避免脱盐不充分,能源浪费等问题。也可根据脱盐过程的具体要求,对不同级MCDI装置进行单独加电控制,以节省能耗。实验研究了一级、二级、三级串联MCDI装置出水水质的脱盐性能,从电压、水力停留时间和盐水质量浓度等方面等进行了优化,最后又分析了多级串联MCDI连续脱盐的稳定性。
多级串联膜电容去离子装置的脱盐性能
Membrane capacitive deionization technology with multi-stage series connection for brine treatment
-
摘要: 膜电容去离子(membrane capacitive deionization, MCDI)技术具有的装置简单、易操作、易再生、成本低,无污染、节能等优势,使其成为一种新型的脱盐技术。为了提升MCDI的脱盐性能,将多个装置的进水串联,对每个装置单独加电来探究脱盐率,平均脱盐速率、单位能量脱盐量等指标对多级串联的影响。结果表明,在进水盐质量浓度、水力停留时间、电压等不同操作条件下,二、三级MCDI串联脱盐率都提高了约2、3倍,三级串联较二级串联的脱盐速率提升较小,但具有更高的能耗。综合比较,二级MCDI串联的脱盐性能更优,并获得了最佳的操作条件为1.5 g·L−1,0.375 min,1.2 V。在连续脱盐过程中,多级串联能够连续稳定的去除盐离子,并且具有较高的吸附容量,表明了连续脱盐的可行性。研究结果对多级MCDI脱盐工程化应用具有指导意义。Abstract: Membrane capacitive deionization (MCDI) technology has the advantages of simple device, easy operation, easy regeneration, low cost, no pollution, energy saving and so on, which makes it a new desalination technology. In order to improve the desalination performance of MCDI, the water influent of multiple devices was connected in series, and each device was charged separately to explore the influence of its salt removal efficiency (SRE), average salt removal rate (ASRR), energy normalization removal salt (ENRS), and other indicators on the multi-stage series connection. The results showed that under different operating conditions such as influent salt concentration, hydraulic retention time, and voltage, the desalination rate of the second and third stage MCDI series increased by about 2 to 3 times. The desalination rate of the third stage series was slightly improved compared to the second stage series, but it had higher energy consumption. Overall comparison, the desalination performance of the two-stage MCDI series connection was better, and the optimal operating conditions were obtained at 1.5 g·L−1, 0.375 min, 1.2 V. In the continuous desalination process, multi-stage series connection can continuously and stably remove salt ions, and has a high adsorption capacity, indicating the feasibility of continuous desalination. The research results have a guiding significance for the desalination engineering application of multi-stage MCDI.
-
[1] FRY L M, MIHELCIC J R, WATKINS D W. Water and non-water related challenges of achieving global sanitation coverage[J]. Environmental Science Technology, 2008, 42: 4298-4304. doi: 10.1021/es7025856 [2] SHANNON M A, BOHN P W, ELIMELECH M. et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452: 301-310. doi: 10.1038/nature06599 [3] ZHAO X Y, WEI H X, ZHAO H C. et al. Electrode materials for capacitive deionization: A review[J]. Journal of Electroanalytical Chemistry, 2020, 873: 114416. doi: 10.1016/j.jelechem.2020.114416 [4] ATIA A A, ALLEN J, YOUNG E. et al. Cost optimization of low-salt-rejection reverse osmosis[J]. Desalination, 2023, 551: 116407. doi: 10.1016/j.desal.2023.116407 [5] DOORNBUSCH G J, TEDESCO M, POST J W. et al. Experimental investigation of multistage electrodialysis for seawater desalination[J]. Desalination, 2019, 464: 105-114. doi: 10.1016/j.desal.2019.04.025 [6] SHI J H, GONG L, ZHANG T. et al. Study of the seawater desalination performance by electrodialysis[J]. Membranes, 2022, 12(8): 12080767. [7] GOPI G, ARTHANAREESWARAN G, ISMAIL A F. Perspective of renewable desalination by using membrane distillation[J]. Chemical Engineering Research and Design, 2019, 144: 520-537. doi: 10.1016/j.cherd.2019.02.036 [8] ZHAO R J, XU J L, TAO P. et al. Clean water generation with switchable dispersion of multifunctional Fe3O4−reduced graphene oxide particles[J]. Progress in Natural Science:Materials International, 2018, 28: 422-429. doi: 10.1016/j.pnsc.2018.05.005 [9] YOON H, JO K, KIM K J. et al. Effects of characteristics of cation exchange membrane on desalination performance of membrane capacitive deionization[J]. Desalination, 2019, 458: 116-121. doi: 10.1016/j.desal.2019.02.009 [10] TSAI S W, HACKL L, KUMAR A. et al. Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI)[J]. Desalination, 2021, 497: 114764. doi: 10.1016/j.desal.2020.114764 [11] WANG C Y, CHEN L, LIU S S. et al. Nitrite desorption from activated carbon fiber during capacitive deionization (CDI) and membrane capacitive deionization (MCDI)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 559: 392-400. [12] 刘洁, 王晓菊, 沈格, 等. 活性炭与炭黑混合电极的脱盐性能及相关工艺参数的优化[J]. 环境工程学报, 2022, 16(3): 875-885. [13] FOLARANMI G, BECHELANY M, SISTAT P. et al. Towards electrochemical water desalination techniques: A review on capacitive deionization, membrane capacitive deionization and flow capacitive deionization[J]. Membranes (Basel), 2020, 10(5): 10050096. [14] LEE J K, KIM Y E, KIM J. et al. Comparable mono and bipolar connection of capacitive deionization stack in NaCl treatment[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(2): 763-766. doi: 10.1016/j.jiec.2011.11.119 [15] MA J X, MA J J, ZHANG C Y. et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration[J]. Water Research, 2020, 168: 115186. doi: 10.1016/j.watres.2019.115186 [16] PARK S K, CHOI J H. Desalination characteristics in a membrane capacitive deionization stack with carbon electrodes connected in series[J]. Separation and Purification Technology, 2019, 209: 152-158. doi: 10.1016/j.seppur.2018.07.032 [17] SALEEM M W, JANDE Y A C, KIM W S. Performance optimization of integrated electrochemical capacitive deionization and reverse electrodialysis model through a series pass desorption process[J]. Journal of Electroanalytical Chemistry, 2017, 795: 41-50. doi: 10.1016/j.jelechem.2017.04.025 [18] CHENG F, DING B, LI X. Research on double-stage and multi-stage capacitive deionization absorption air-conditioning system[J]. Processes, 2021, 9(2): 9020395. [19] 王祺, 房阔, 贺聪慧, 等. 流动电极电容去离子技术综述: 研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. [20] 沈格, 刘洁, 王晓菊, 等. 膜电容去离子电极中导电剂类型及掺杂比对脱盐性能的影响[J]. 环境科学学报, 2022, 42(10): 293-302. [21] YING T Y, YANG K L, YIACOUMI S. et al. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel[J]. Journal of Colloid and Interface Science, 2002, 250(1): 18-27. doi: 10.1006/jcis.2002.8314 [22] 郭宁, 郭婷, 陈方方. 电容去离子脱盐影响因素的研究进展[J]. 四川化工, 2023, 26(3): 11-15. [23] MOSSAD M, ZOU L. A study of the capacitive deionisation performance under various operational conditions[J]. Journal of Hazardous Materials, 2012, 213-214: 491-497. doi: 10.1016/j.jhazmat.2012.02.036 [24] 代凯, 朱光平, 刘忠良, 等. 纳米碳管电吸附氯化钠性能的研究[J]. 化工新型材料, 2011, 39(3): 70-72.