-
含磷废水排入收纳水体,易导致水中磷元素含量超标造成水体富营养化现象[1]。吸附法因其高效、清洁和可回收等众多优点在除磷技术中占据重要地位。相关研究[2]表明,稀土元素能够在低浓度下与磷生成不易溶解的络合物,具备超高的亲磷能力。镧基吸附剂已在许多研究中展现出优异的除磷能力[3],而铈基吸附剂的报道相对较少。事实上,铈(Ce)是储量最丰、价格最便宜的稀土元素,对于阴离子展现出良好的吸附性能,具有强大的除磷潜力[4],但单一采用Ce及其氧化物会面临一系列的问题,如吸附时易团聚、价格昂贵、吸附后回收困难及吸附点位不均等[5]。因此,寻找一种合适的载体可以弥补铈作为除磷吸附剂的不足。
在自来水厂的水质净化过程中,不可避免地会产生净水污泥(drinking water treatment residues, DWTR)。DWTR含水率高,表面附着羟基,具有大量Si、Al、O、Fe元素以及一定的孔道结构与层状结构。过往对于DWTR的处理方式主要为焚烧、填埋和弃海,这些处理方法回收效率低、回收成本高[6]。为响应可持续性发展战略,利用DWTR的特性制备除磷吸附剂可以进一步推进其资源化再利用。近几十年,研究者们采用热处理、酸碱盐改性以及亲和元素负载等方式改性DWTR,用以吸附废水中的无机物、有机物和毒害物质[7-9]。
本研究采用煅烧-碱浸-铈负载联合改性DWTR的方式制备了一种新型除磷吸附剂,弥补了DWTR孔道结构连通性差、Si元素占据点位、亲和基团不足以及稀土元素易团聚等缺点。考察了Ce/泥负载质量比、投加量、pH以及共存离子对材料吸附除磷效能的影响,采用SEM、XRD、BET、XPS、FT-IR探究了材料的吸附特征,对磷酸盐吸附过程动力学、吸附等温线及颗粒扩散模型的拟合,探究了材料的循环再生能力,且根据上述所得结果推测了可能的吸附机理。
铈改性净水污泥除磷效能与机理分析
Performance and mechanism analysis of phosphorus removal by cerium-modified drinking water treatment residual
-
摘要: 磷酸盐含量是控制水环境质量的重要标准之一,吸附是一种高效、清洁和经济的除磷技术。采用铈改性净水污泥吸附去除磷酸盐,考察了铈负载量、投加量、pH、共存离子等因素对吸附磷酸盐的影响,探讨了可能的吸附机理及吸附材料循环再生能力。结果表明,铈改性净水污泥吸附磷酸盐过程符合拟二级动力学和Freundlich吸附等温线,最大吸附量为69.43 mg·g−1,吸附速率受内扩散、边界层效应等多重因素的限制。在Cl−、NO3−、CO32−、SO42−等共存离子干扰下,铈改性净水污泥具备选择性吸附磷酸盐的能力。在进行5次吸附-解吸循环后,吸附材料对磷酸盐的去除率下降了25.4%。吸附机制主要为磷酸盐与羟基以及含铈基团的静电吸引和配体交换。Abstract: Phosphate content is one of the important criteria for controlling the quality of the water environment, and adsorption is an efficient, clean, and economical technique for phosphate removal. In this study, cerium-modified drinking water treatment residual was used to remove phosphate by adsorption, and the effects of cerium loading, dosage, pH, and coexisting ions on phosphate adsorption were investigated to explore the adsorption mechanism and the cyclic regeneration capacity of adsorbent materials. The results showed that the phosphate adsorption process of cerium-modified drinking water treatment residual was consistent with the proposed secondary kinetics and Freundlich adsorption isotherm, and the maximum adsorption capacity was 69.43 mg·g−1. The adsorption rate was controlled by multiple factors, such as internal diffusion and the boundary layer effect. The cerium-modified drinking water treatment residual had the ability to selectively adsorb phosphate at the interference of co-existing ions such as Cl−, NO3−, CO32−, SO42−, etc. After five adsorption-desorption cycles, the removal rate of phosphate by the adsorbent material decreased by 25.4%. The adsorption mechanism is mainly electrostatic attraction and ligand exchange between phosphates and hydroxyl groups as well as cerium-containing groups.
-
表 1 DWTR、RJDWTR与RJDWTR@10%~60%Ce的吸附物理特性
Table 1. Physical properties of DWTR, RJDWTR and RJDWTR@10%~60%Ce for adsorption
吸附剂 比表面积/
(m2·g−1)孔径/
nm孔体积/
(cm3·g−1)DWTR 35.411 10.934 0.098 RJDWTR 52.141 14.417 0.165 RJDWTR@10%Ce 44.615 11.736 0.126 RJDWTR@20%Ce 38.811 11.155 0.102 RJDWTR@30%Ce 30.013 10.706 0.09 RJDWTR@40%Ce 28.645 10.156 0.073 RJDWTR@50%Ce 26.4 9.499 0.058 RJDWTR@60%Ce 22.196 8.046 0.045 表 2 磷酸盐在DWTR、RJDWTR与 RJDWTR@40%Ce上的吸附动力学参数
Table 2. Adsorption kinetic parameters of phosphate on DWTR, RJDWTR and RJDWTR@40%Ce
吸附剂 qe,ecp 拟一级动力学 拟二级动力学 /(mg·g−1) k1/min−1 qe,1/(mg·g−1) R2 k2/(g·(mg·min)−1) qe,2/(mg·g−1) R2 DWTR 4.995 0.000 9 1.77 0.941 0.001 1 4.862 0.987 RJDWTR 7.895 0.00 10 1.973 0.937 0.001 5 7.659 0.997 RJDWTR@40%Ce 16.45 0.00 12 1.797 0.851 0.003 5 16.263 0.999 表 3 磷酸盐在DWTR、RJDWTR与 RJDWTR@40%Ce上的颗粒内扩散模型参数
Table 3. Intra-particle diffusion modeling parameters of phosphate adsorption on DWTR, RJDWTR and RJDWTR@40%Ce
吸附剂 第1阶段 第2阶段 第3阶段 kd1 Cd1 Rd12 kd2 Cd2 Rd22 kd3 Cd3 Rd32 /(mg·g−1·min1/2) /(mg·g−1) — /(mg·g−1·min1/2) /(mg·g−1) — /(mg·g−1·min1/2) /(mg·g−1) — DWTR 0.024 0.908 0.932 0.169 0.583 0.996 0.027 3.216 0.984 RJDWTR 0.222 1.337 0.960 0.151 2.333 0.981 0.022 6.333 0.994 RJDWTR@40%Ce 0.724 7.266 0.980 0.086 13.363 0.968 0.035 14.454 0.917 表 4 磷酸盐在RJDWTR和RJDWTR@40%Ce上的吸附等温线参数
Table 4. Phosphate adsorption isotherm parameters on RJDWTR and RJDWTR@40%Ce
吸附剂 温度/ ℃ Langmuir模型 Freundlich模型 Qm
/(mg·g−1)KL
/(L·mg−1)R2 KF
/(mg·g−1) ·(L·g−1)1/n1/n R2 RJDWTR 25 38.364 0.010 7 0.909 1.649 0.53 0.989 35 40.539 0.014 2 0.894 2.550 0.489 4 0.991 45 41.945 0.023 8 0.933 4.531 0.396 8 0.987 RJDWTR@40%Ce 25 69.425 0.063 3 0.950 16.587 0.273 7 0.990 35 68.270 0.039 9 0.953 12.623 0.310 3 0.979 45 62.464 0.032 0 0.912 8.533 0.364 6 0.992 表 5 除磷吸附剂对比
Table 5. Comparison of phosphorus removal by adsorbents
吸附剂 最大吸附量/
(mg·g−1)初始P质量浓度/
(mg·L−1)参考文献 粒状羟基铁 8.99 5 [22] 改性钢渣与水泥 21.70 1~50 [23] La改性粉煤灰 24.90 10~200 [24] 磁性Fe-Zr
二元氧化物13.65 0~100 [25] La-Zr双金属改性磁吸附剂 49.07 50 [26] 茶渣载纳米银
活性炭13.62 10~100 [27] La2(CO3)3改性
微纤维34.2 10~200 [28] 铈改性锂硅粉 10.89 — [29] 氢氧化铈纳米
复合材料36.45 30 [30] RJDWTR 41.95 10~200 本研究 RJDWTR@40%Ce 69.43 10~200 本研究 -
[1] 黄镁宁, 宁寻安, 张建易, 等. 漫水河清远流域磷污染特征及富里酸对沉积物释磷的影响[J]. 环境工程学报, 2022, 16(5): 1549-1557. doi: 10.12030/j.cjee.202112023 [2] CETINER Z S, WOOD S A, GAMMONS C H. The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 ℃[J]. Chemical Geology. 2005, 217(1/2): 147-169. [3] HE Q, ZHAO H, TENG Z, et al. Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances[J]. Chemosphere. 2022, 303: 134987. doi: 10.1016/j.chemosphere.2022.134987 [4] SHAN S, ZHANG T, WANG W, et al. Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation[J]. Chemical Engineering Journal. 2021, 425: 128894. doi: 10.1016/j.cej.2021.128894 [5] YU Y, YU L, KOH K Y, et al. Rare-earth metal based adsorbents for effective removal of arsenic from water: A critical review[J]. Critical reviews in environmental Science and Technology. 2018, 48: 1127-1164. doi: 10.1080/10643389.2018.1514930 [6] 余杰, 鱼红霞, 杜义鹏, 等. 城市垃圾焚烧厂直接掺烧城市污泥处置技术及其污染控制[J]. 环境工程学报, 2020, 14(11): 3155-3161. doi: 10.12030/j.cjee.202001003 [7] 何李文泽, 陈钰, 孙飞, 等. 镧改性净水污泥水热炭对水体中磷的吸附特性及底泥内源磷的固定[J]. 环境科学, 2023, 44(6): 3288-3300. doi: 10.13227/j.hjkx.202207114 [8] LIAN J, ZHOU F, CHEN B, et al. Enhanced adsorption of molybdenum (VI) onto drinking water treatment residues modified by thermal treatment and acid activation[J]. Journal of Cleaner Production. 2019, 244(1): 118719. [9] LI Y, ZHANG Y, SU F, et al. Adsorption behaviour of microplastics on the heavy metal Cr (VI) before and after ageing[J]. Chemosphere. 2022, 302: 134865. doi: 10.1016/j.chemosphere.2022.134865 [10] 张玉妹, 韩乙萱, 魏杰, 等. 碱改性净水污泥对水中氨氮的吸附效能研究[J]. 环境科学学报, 2014, 34(10): 2484-2490. doi: 10.13671/j.hjkxxb.2014.0648 [11] TANG Y, CHEN Z, WEN Q. Magnetic powdery acrylic polymer with ultrahigh adsorption capacity for atenolol removal: Preparation, characterization, and microscopic adsorption mechanism[J]. Chemical engineering journal. 2022, 446: 137175. doi: 10.1016/j.cej.2022.137175 [12] TANG L, YU J, PANG Y, et al. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J]. Chemical Engineering Journal. 2018, 336: 160-169. doi: 10.1016/j.cej.2017.11.048 [13] ALMáši M, ZELEňáK V, OPANASENKO M, et al. Ce (III) and Lu (III) metal–organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation[J]. Catalysis Today. 2015, 243: 184-194. doi: 10.1016/j.cattod.2014.07.028 [14] YANG H, ZENG G, LIU Y, et al. Study on adsorption and recovery utilization of phosphorus using alkali melting-hydrothermal treated oil-based drilling cutting ash[J]. Journal of Environmental Management. 2023, 332: 117373. doi: 10.1016/j.jenvman.2023.117373 [15] 徐晋, 马一凡, 姚国庆, 等. KOH活化小麦秸秆生物炭对废水中四环素的高效去除[J]. 环境科学, 2022, 43(12): 5635-5646. doi: 10.13227/j.hjkx.202201253 [16] HE J, XU Y, SHAO P, et al. Modulation of coordinative unsaturation degree and valence state for cerium-based adsorbent to boost phosphate adsorption[J]. Chemical Engineering Journal. 2020, 394: 124912. doi: 10.1016/j.cej.2020.124912 [17] WANG Y, XIE X, CHEN X, et al. Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption[J]. Journal of Hazardous Materials. 2020, 396(8): 122626. [18] LIU X, WANG Y, SMITH R L, et al. High-capacity structured MgO-Co adsorbent for removal of phosphorus from aqueous solutions[J]. Chemical Engineering Journal. 2021, 426(21): 131381. [19] 李迎春, 董良飞, 仝驰, 等. 稀土改性凹凸棒土对低浓度磷的吸附性能[J]. 环境工程学报, 2021, 15(10): 3214-3222. doi: 10.12030/j.cjee.202106129 [20] GUPTA N, SAIFUDDIN M, KIM S, et al. Microscopic, spectroscopic, and experimental approach towards understanding the phosphate adsorption onto Zn–Fe layered double hydroxide[J]. Journal of Molecular Liquids. 2020, 297(1): 111935. [21] 宋志伟, 卿卓霖, 钱锋, 等. 海藻酸钠/锆@钙水凝胶的制备及其对磷的吸附研究[J]. 环境科学学报报, 2022, 42(3): 151-161. [22] PAPPER R A, COUPERTHWAITE S J, MILLAR G J. Re-use of waste red mud: Production of a functional iron oxide adsorbent for removal of phosphorous[J]. Journal of Water Process Engineering. 2018, 25: 138-148. doi: 10.1016/j.jwpe.2018.07.006 [23] LI J, WU B, ZHOU T, et al. Preferential removal of phosphorus using modified steel slag and cement combination for its implications in engineering applications[J]. Environmental Technology & Innovation. 2018, 10: 264-274. [24] ASAOKA S, KAWAKAMI K, SAITO H, et al. Adsorption of phosphate onto lanthanum-doped coal fly ash—Blast furnace cement composite[J]. Journal of Hazardous Materials. 2020, 406(2): 124780. [25] LONG F, GONG J L, ZENG G M, et al. Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide[J]. Chemical Engineering Journal. 2011, 171(2): 448-455. doi: 10.1016/j.cej.2011.03.102 [26] LIN X, XIE Y, LU H, et al. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery[J]. Chemical Engineering Journal. 2021, 413: 127530. doi: 10.1016/j.cej.2020.127530 [27] TRINH V T, NGUYEN T M P, VAN H T, et al. Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue[J]. Scientific Reports. 2020, 10: 3634. doi: 10.1038/s41598-020-60542-0 [28] YUAN J, ZHU Y, WANG J, et al. Preparation and application of Mg-Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage[J]. Food and Bioproducts Processing. 2021, 126(22): 293-304. [29] LIN W L, GU J C, WANG W Y, et al. Adsorption of phosphorus by Ce-modified Lithium Silica Fume[J]. Applied Mechanics & Materials. 2013, 368-370(III): 687-691. [30] YANG W, SHI X, DONG H, et al. Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal[J]. Chemical Engineering Journal. 2021, 405: 126649. doi: 10.1016/j.cej.2020.126649 [31] YANG Q, WANG X, LUO W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology. 2017, 247: 537-544. [32] WEI X, SUN Y, PAN D, et al. Adsorption properties of Na-palygorskite for Cs sequestration: Effect of pH, ionic strength, humic acid and temperature[J]. Applied Clay Science. 2019, 183: 105363. doi: 10.1016/j.clay.2019.105363 [33] HE J, XU Y, XIONG Z, et al. The enhanced removal of phosphate by structural defects and competitive fluoride adsorption on cerium-based adsorbent[J]. Chemosphere. 2020, 256(3): 127056. [34] LV N, LI X, et al. Phosphorus removal from wastewater using Ca-modified attapulgite: Fixed-bed column performance and breakthrough curves analysis[J]. Journal of Environmental Management. 2023, 328: 116905. doi: 10.1016/j.jenvman.2022.116905 [35] GU Y, XIE D, MA Y, et al. Size modulation of zirconium-based metal organic frameworks for highly efficient phosphate remediation[J]. ACS Applied Materials & Interfaces. 2017, 9(37): 32151-32160. [36] DU M, ZHANG Y, WANG Z. La-doped activated carbon as high-efficiency phosphorus adsorbent: DFT exploration of the adsorption mechanism[J]. Separation and Purification Technology. 2022, 298: 121585. doi: 10.1016/j.seppur.2022.121585 [37] MIN X, WU X, SHAO P, et al. Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: Unusual doping of lanthanum by the reduction of coordination number[J]. Chemical Engineering Journal. 2019, 358: 321-330. doi: 10.1016/j.cej.2018.10.043