-
地下水中磷富集已成为湖泊富营养化的重要来源之一[1]。地下水中的无机磷主要以正磷酸盐阴离子(H2PO4−和HPO42-)的形式存在于地下水环境中[2]。近年来,许多研究表明,全球洪泛区地下水含水层中磷含量达0.05~1.2 mg·g−1[3]。然而,对于地下水中磷的污染过程尚不清晰[4]。
胶体是一种颗粒粒径在1~1 000 nm的分散体,在天然水域的地球化学循环中起着至关重要的作用[5]。课题组前期工作中研究了江汉平原地下水中铁锰胶体与磷的含量分布情况,发现了地下水中铁锰胶体与磷之间存在较强的耦合控制作用[6]。ELEANER等[7]研究铁胶体在深层地下水系统中形成和迁移,同样发现三价铁(氢)氧化物胶体能使无机盐发生迁移。土壤/沉积物中常见的铁锰矿物有水铁矿、针铁矿、二氧化锰、水钠锰矿[8],易从沉积物表面分离而下渗到地下水中,并以胶体的形式参与到地下水中磷的吸附、释放、迁移及转化[9]。然而,地下水环境中铁锰胶体对无机磷的吸附-脱附机制鲜有报道。
本研究对比探讨了常见的4种铁锰胶体(水铁矿、针铁矿、二氧化锰及水钠锰矿)对地下水中无机磷的吸附-脱附行为,考察了胶体质量浓度、时间、pH、离子强度及有机质对磷在铁锰胶体上吸/脱附影响,探究了其吸/脱附机制,为认识地下水中磷污染过程提供基础。
铁锰胶体对地下水中无机磷的吸附-脱附特性
Adsorption and desorption properties of iron and manganese colloids to inorganic phosphorus in groundwater
-
摘要: 地下水中磷富集已成为水体富营养化的重要污染来源之一,但对于地下水中磷的污染过程认识不清。本研究对比了地下水中常见4种铁锰胶体(水铁矿胶体、针铁矿胶体、二氧化锰胶体和水钠锰矿胶体)对无机磷的吸附和脱附性能的差异。结果表明:铁锰胶体对磷的吸附主要是单分子层的化学吸附,锰胶体吸附量与吸附速率均大于铁胶体,中性pH和较高离子强度有利于铁锰胶体对磷的吸附,但有机质的存在会大大降低对磷的吸附量,尤其是针铁矿胶体受有机质的影响程度最大,其中腐殖酸影响比富里酸更大。同时,钙离子对磷从铁锰胶体上的脱附影响高于钠离子,且铁胶体的脱附效率高于锰胶体。以上研究结果为理解地下水中磷污染过程提供数据支撑。Abstract: Recent studies have shown that phosphorus enrichment in groundwater has become one of the important pollution sources of water eutrophication. However, the process of phosphorus pollution in groundwater is not clear. The differences of adsorption-desorption characteristics among four common iron and manganese colloids (ferrihydrite colloids, goethite colloids, manganese dioxide colloids and birnessite colloids) toward inorganic phosphoruswere compared. The results showed that phosphorus adsorption onto iron and manganese colloids was dominated by a monolayer and chemical process. The adsorption capacities and rates of manganese colloids were greater than those of iron colloids. The conditions of neutral pH and high ionic strength were favorable for the adsorption of phosphorus by iron and manganese colloids, while the presence of organic matter greatly decreased phosphorus adsorption capacity, especially the highest suppression effect occurred onto goethite colloids, and humic acid presented a stronger suppression than fulvic acid. Moreover, the phosphorus desorption were effected more seriously by Ca2+ ions than that by Na+ ones, and the desorption rate by iron colloids was higher than that by manganese ones. Therefore, above results can provide the data support for phosphorus pollution process in groundwater .
-
Key words:
- iron and manganese colloid /
- phosphorus /
- adsorption /
- desorption /
- underground water
-
表 1 实验中不同铁锰胶体物理化学特征
Table 1. Physical and chemical characteristics of different iron and manganese colloids in the experiment
胶体 Zeta电位/mV 粒径/nm 比表面积/(m2·g−1) 水铁矿胶体 45.5 287.5 135.3 针铁矿胶体 7.2 452.8 124.9 二氧化锰胶体 -38.9 161.5 180.2 水钠锰矿胶体 -50.5 150.4 142.4 表 2 铁锰胶体对磷的吸附动力学曲线拟合参数
Table 2. Fitting parameters of phosphorus adsorption kinetics on iron and manganese colloids
胶体 伪一级吸附动力学模型 伪二级吸附动力学模型 K1/min−1 qe/(mg·g−1) R12 K2/(mg·(g·min)−1) qe /(mg·g−1) R22 水铁矿胶体 0.02 28.12 0.982 0.04 32.09 0.984 针铁矿胶体 0.01 23.37 0.967 0.07 25.52 0.981 二氧化锰胶体 0.05 64.63 0.957 0.06 71.10 0.981 水钠锰矿胶体 0.04 42.68 0.964 0.09 46.17 0.989 表 3 铁锰胶体对磷的等温吸附线的拟合参数
Table 3. Fitting parameters of phosphorus adsorption isotherm on iron and manganese colloids
胶体 Langmuir模型 Freundlich模型 KL/(L·mg−1) Qm/(mg·g−1) RL2 KF n RF2 水铁矿胶体 0.02 141.86 0.960 10.58 3.23 0.840 针铁矿胶体 0.02 100.79 0.967 9.71 2.76 0.926 二氧化锰胶体 0.02 177.96 0.990 10.19 9.71 0.853 水钠锰矿胶体 0.02 165.96 0.970 12.27 7.80 0.856 -
[1] LIU L, OUYANG W, LIU H, et al. Drainage optimization of paddy field watershed for diffuse phosphorus pollution control and sustainable agricultural development[J]. Agriculture, Ecosystems & Environment, 2021, 308: 107238. [2] BORCH T, KRETZSCHMAR R, KAPPLER A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science & Technology, 2010, 44(1): 15-23. [3] LI Y, YU C, ZHAO B, et al. Spatial variation in dissolved phosphorus and interactions with arsenic in response to changing redox conditions in floodplain aquifers of the Hetao Basin, Inner Mongolia[J]. Water Research, 2022, 209: 117930. doi: 10.1016/j.watres.2021.117930 [4] 张嘉雯, 魏健, 刘利, et al. 衡水湖沉积物营养盐形态分布特征及污染评价[J]. 环境科学, 2020, 41(12): 5389-5399. doi: 10.13227/j.hjkx.202004237 [5] ZHANG J, LIANG X, JIN M, et al. Identifying the groundwater flow systems in a condensed river-network interfluve between the Han River and Yangtze River (China) using hydrogeochemical indicators[J]. Hydrogeology Journal, 2019, 27(7): 2415-2430. doi: 10.1007/s10040-019-01994-1 [6] HUANG S, CHEN L, Li J, et al. The effects of colloidal Fe and Mn on P distribution in groundwater system of Jianghan Plain, China[J]. Science of The Total Environment, 2023, 854: 158739. doi: 10.1016/j.scitotenv.2022.158739 [7] SPIELMAN-SUN E, BLAND G, WIELINSKI J, et al. Environmental impact of solution pH on the formation and migration of iron colloids in deep subsurface energy systems[J]. Science of the Total Environment, 2023: 166409. [8] JIANMIN Z. Ferrihydrite: Surface structure and its effects on phase transformation[J]. Clays and Clay Minerals, 1994, 42(6): 737-746. doi: 10.1346/CCMN.1994.0420610 [9] DEGUELDRE C, BENEDICTO A. Colloid generation during water flow transients[J]. Applied Geochemistry, 2012, 27(6): 1220-1225. doi: 10.1016/j.apgeochem.2012.01.017 [10] GOLDDBERG S, JOHNSTO C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J]. Journal of Colloid and Interface Science, 2001, 234(1): 204-216. doi: 10.1006/jcis.2000.7295 [11] ZHANG G, QU J, LIU H, et al. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal[J]. Water Research, 2007, 41(9): 1921-1928. doi: 10.1016/j.watres.2007.02.009 [12] LI Z, DING Y, XIONG Y, et al. Rational growth of various α-MnO 2 Hierarchical Structures and β-MnO 2 nanorods via a homogeneous catalytic route[J]. Crystal Growth & Design, 2005, 5(5): 1953-1958. [13] ATKINS A L, SHAW S, PEACOCK C L. Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 189: 158-183. doi: 10.1016/j.gca.2016.06.007 [14] 邵兴华, 章永松, 林咸永, 等. 三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系[J]. 植物营养与肥料学报, 2006(2): 2208-2212. [15] CHEN P, ZHOU Y, XIE Q, et al. Phosphate adsorption kinetics and equilibria on natural iron and manganese oxide composites[J]. Journal of Environmental Management, 2022, 323: 116222. doi: 10.1016/j.jenvman.2022.116222 [16] SCHOTTING R J, MOSER H, HASSANIZADE S M. High-concentration-gradient dispersion in porous media: experiments, analysis and approximations[J]. Advances in Water Resources, 1999, 22(7): 665-680. doi: 10.1016/S0309-1708(98)00052-9 [17] 李政辉. 针铁矿/水铁矿-有机质复合体对有机磷的吸附特征研究[D]. 武汉: 华中农业大学, 2022. [18] MUSTAFA S, ZAMAN M I, Khan S. pH effect on phosphate sorption by crystalline MnO2[J]. Journal of Colloid and Interface Science, 2006, 301(2): 370-375. doi: 10.1016/j.jcis.2006.05.020 [19] 李惠. 铝胶体和腐殖酸对铀在饱和石英砂中迁移影响研究[D]. 衡阳: 南华大学, 2021. [20] BORGGAARD O K, RABEN-LANGE B, Gimsing A L, et al. Influence of humic substances on phosphate adsorption by aluminium and iron oxides[J]. Geoderma, 2005, 127(3/4): 270-279. [21] 宋嘉慧, 皇甫小留, 何强, 等. t al0–2对重金属Tl(Ⅰ)的吸附效能及影响因素[J]. 中国给水排水, 2019, 35(9): 53-57. [22] HIEMTRA T, VAN RIEMSDIJK W H. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density[J]. Geochimica et Cosmochimica Acta, 2009, 73(15): 4423-4436. doi: 10.1016/j.gca.2009.04.032