-
河流在地球水循环中具有不可替代的生态、环境和社会服务等功能,也是最脆弱的生态系统之一,易受气候变化、人为破坏等外界因素的影响。河流生态系统的保护、健康维持和恢复已成为全社会共同关注的问题[1-2]。尽管河流状况可通环境参数 (pH、COD、营养盐、溶解氧等) 来评价,但只能反映水体瞬时的污染物浓度,难以体现系统复合污染产生的综合效应[3]。为全面反映污染或人为干扰对水质、水生生物和水生态系统的影响,需要利用生物评价对其进行补充完善。
水体生物评价能监测生物对污染物质的反应,即通过研究水生生物的种群数量、群落结构组成和水生态系统功能等的动态,分析和判断水体受污染的性质和程度[4]。底栖动物即大型底栖无脊椎动物,是水生态系统的重要组成部分,其中的大多数对环境扰动敏感,迁移能力较弱,相比浮游动植物、鱼类等,可更有效地反映水体中各种污染因子对生物的综合作用和累积效应,常作为指示生物被广泛应用于水质评价和环境监测中[5-6]。胡小红等[7]对北运河流域底栖动物群落特征进行分析,并筛选得到水质驱动因子,最终对北运河流域水生态系统健康状况进行评价。GOLOVATYUK等[8]通过调查俄罗斯Samoroda河中游和河口河段大型底栖动物群落的物种组成、密度、生物量和估计产量探究了盐分对生态系统的影响。但针对数量众多、生态系统较为脆弱的内陆中小型河流生态系统健康评价及大型底栖动物与环境因子相关性方面的研究仍相对薄弱。
赤水河发源于云南省镇雄县,横跨滇、黔、川三省,是长江南岸较大的一级支流,对维持周围流域生物多样性和生态系统的稳定性具有重要意义[9-10]。赤水河也是贵州省的核心经济纽带,为流域社会经济发展提供了优质的水源和丰富的水生生物资源,具有极其重要的生态和经济地位[11]。近年来,随着赤水河流域社会经济活动显著增加和自然环境的恶化,流域水体逐渐面临水生态状况下降、生物多样性降低、水环境污染的威胁,准确评价其水体健康程度对水生态保护具有重大意义。
本研究以赤水河 (仁怀段) 为研究对象,对其开展底栖动物的系统调查,从空间结构上分析赤水河底栖动物群落组成,明确赤水河水体的污染状况,阐明底栖动物与环境因子间的相关关系,以期为赤水河生态环境保护提供参考,促进赤水河流域生态系统良性循环。
赤水河 (仁怀段) 底栖动物群落特征及驱动因素分析
Macroinvertebrate community characteristics and driving factors in the Chishui River (Renhuai section)
-
摘要: 为探究赤水河 (仁怀段) 底栖动物群落组成特点及其与环境因子的内在关联,开展底栖动物组成和水质参数的综合研究。通过采用密度、生物量调查,多样性指数,Pearson相关性和冗余性分析等方法,对赤水河 (仁怀段) 地区的大型底栖动物群落组成和主要影响环境因子进行分析。结果表明,在赤水河 (仁怀段) 地区共采集到48种大型底栖动物,隶属于4门7纲32科,底栖动物的物种数和密度分布均呈现上游高于中下游的趋势。其中,昆虫类动物丰度最高,共有33类种属,腹足纲次之。Shannon-Wiener多样性指数和Margalef's物种丰富度指数表现为上游高于中下游,表明底栖动物群落结构空间存在一定差异,而Pielou均匀度指数和Simpson's Diversity指数整体变化不大。冗余分析结果显示,TN、DO和浊度是影响赤水河底栖动物群落结构的主要环境因子。该研究结果可为赤水河底栖动物群落的恢复与生态环境保护提供参考。Abstract: To investigated the characteristics of the macrobenthic community composition in the Chishui River (Renhuai section) and its correlation with environmental factors, this study conducted a comprehensive investigation into benthic animal composition and water quality parameters. Density, biomass, diversity index, Pearson correlation and redundancy analysis were used to analyze the macrobenthic community composition and the main influencing environmental factors in the region. Results revealed that 48 species of macrobenthos were collected and identified in the Chishui River (Renhuai section), which belonged to 4 phylum, 7 classes and 32 orders. The species richness and density distribution of benthic animals decreased from upstream to downstream, among which the abundance of insects was the highest, with 33 species and genera, followed by gastropods. The Shannon-Wiener diversity index and Margalef's species richness index indicated values in the upstream region compared to the midstream and downstream areas, with some spatial variation in benthic community structure, whereas the Pielou evenness index and Simpson's Diversity index showed relatively consistent values across the spatial gradient. The redundancy analysis demonstrated that the most critical environmental factors affecting benthic community structure were TN, DO and turbidity. This research provided scientific support for the restoration of macrobenthic communities and ecological protection of the Chishui River.
-
Key words:
- Chishui River /
- macrobenthos /
- biodiversity /
- environmental factors
-
表 1 赤水河 (仁怀段) 水质指标相关性分析
Table 1. Correlation relationships of water quality indicators in the Chishui River (Renhuai section)
水质指标 T pH DO COD TN [NH4+−N] TP [PO43−−P] 浊度 T 1.000 pH 0.073 1.000 DO −0.224 −0.207 1.000 COD 0.163 −0.135 −0.270 1.000 TN 0.067 −0.162 −0.140 −0.016 1.000 [NH4+−N] 0.256 0.180 −0.671* −0.073 −0.340 1.000 TP 0.067 0.311 −0.638* 0.337 0.113 0.557 1.000 [PO43−−P] −0.006 0.152 −0.176 −0.664* 0.453 0.315 0.238 1.000 浊度 −0.333 −0.201 −0.164 −0.006 0.829** −0.274 0.353 0.407 1.000 注:*P≤0.05,**P≤0.01。 表 2 赤水河 (仁怀段) 底栖动物相似度分析
Table 2. Similarity analysis of the benthic fauna of the Chishui River (Renhuai section)
采样位点 UG-1 UG-2 UG-3 MG-1 MG-2 MG-3 MG-4 DG-1 DG-2 DG-3 UG-1 1 UG-2 0.45 1 UG-3 0.31 0.3 1 MG-1 0.14 0.25 0.15 1 MG-2 0.17 0 0.23 0.12 1 MG-3 0 0.1 0.28 0.36 0.11 1 MG-4 0.18 0.15 0.28 0.38 0.33 0.3 1 DG-1 0.09 0.16 0.12 0.21 0.3 0.21 0.31 1 DG-2 0 0.05 0.11 0.13 0.15 0.21 0.31 0.43 1 DG-3 0 0.05 0.05 0.27 0 0.29 0.23 0.31 0.41 1 -
[1] 张续同, 李卫明, 张坤, 等. 长江宜昌段桥边河大型底栖动物功能摄食类群时空分布特征[J]. 生态学报, 2022, 42: 2559-2570. [2] HILL B H, HERLIHY A T, KAUFMANN P R, et al. Assessment of streams of the eastern United States using a periphyton index of biotic integrity[J]. Ecological Indicators, 2003, 2: 325-338. doi: 10.1016/S1470-160X(02)00062-6 [3] BHADRECHA M H, KHATRI N, TYAGI S. Rapid integrated water quality evaluation of Mahisagar river using benthic macroinvertebrates[J]. Environmental Monitoring and Assessmeent, 2016, 188: 254. doi: 10.1007/s10661-016-5256-9 [4] 贺玉晓, 李珂, 任玉芬, 等. 春季北京市河流大型底栖动物群落结构特征及影响因子分析[J]. 环境科学, 2020, 41(6): 2951-2962. [5] RIATO L, LEIBOWITZ S G, WEBER M H. The use of multiscale stressors with biological condition assessments: A framework to advance the assessment and management of streams[J]. Science of the Total Environment, 2020, 737: 139699. doi: 10.1016/j.scitotenv.2020.139699 [6] 渠晓东, 陈军, 陈皓阳, 等. 大型底栖动物快速生物评价指数在城市河流生态评估中的应用[J]. 水生态学杂志, 2021, 42(3): 14-22. [7] 胡小红, 左德鹏, 刘波, 等. 北京市北运河水系底栖动物群落与水环境驱动因子的关系及水生态健康评价[J]. 环境科学, 2022, 43(1): 247-255. [8] GOLOVATYUK L V, ZINCHENKO T D, NAZAROVA L B. Macrozoobenthic communities of the saline Bolshaya Samoroda River (Lower Volga region, Russia): Species composition, density, biomass and production[J]. Aquatic Ecology, 2019, 54: 57-74. [9] 魏秘, 朱爱民, 王瑞, 等. 赤水河春季浮游植物群落结构变化及其优势种生态位分析[J]. 水生态学杂志, 2022, 43(5): 49-59. [10] LIU F, WANG X, WANG M R, et al. Diet partitioning and trophic guild structure of fish assemblages in Chishui River, the last undammed tributary of the upper Yangtze River, China[J]. River Research and Applications, 2019, 35: 1530-1539. doi: 10.1002/rra.3519 [11] 代堂刚, 余仲相, 杨中兰. 云南省境内赤水河流域水资源水生态现状分析 J]. 人民长江, 2021, 52(S1): 47-51.
[12] 中华人民共和国生态环境保护部. 生物多样性观测技术指导-淡水底栖大型无脊椎动物: HJ 710.8-2014, [S]. 北京: 中国环境科学出版社, 2014. [13] 刘爱玲, 黄绵达, 刘旻璇, 等. 八里湖大型底栖动物群落结构及水质生物学评价[J]. 人民长江, 2022, 53(10): 37-44. [14] LI Q, WANG G, WANG H, et al. Macrozoobenthos variations in shallow connected lakes under the influence of intense hydrologic pulse changes[J]. Journal of Hydrology, 2020, 584. [15] NOURIANI H, EZZATI R. Application of Simpson quadrature rule and iterative method for solving nonlinear fuzzy delay integral equations.[J]. Fuzzy Sets and Systems, 2020, 400: 147-161. doi: 10.1016/j.fss.2020.01.007 [16] WEI X, LI J, CHEN Y Y, et al. Determinants of community structure of zooplankton in heavily polluted river ecosystems[J]. Science Report, 2016, 6: 22043. doi: 10.1038/srep22043 [17] 闵文武, 黄福江, 王伟. 赤水河秋季浮游动物群落结构及其与环境因子关系[J]. 安徽农业科学, 2021, 49(11): 75-79. [18] 胡芳, 刘聚涛, 温春云, 等. 抚河流域底栖动物群落结构及基于完整性指数的健康评价[J]. 水生态学杂志, 2022, 43(1): 30-39. [19] PABURU P, MAVUTI K M, HARPER D M, et al. Population structure and secondary productivity of Limnodrilus hoffmeisteri (Claparede) and Branchiura sowerbyi Beddard in the profundal zone of Lake Naivasha, Kenya[J]. Hydrobiologia, 2002, 488: 153-161. doi: 10.1023/A:1023382631822 [20] 沙婧婧, 杜小媛, 刘欣禹, 等. 2016-2018年夏季渤海浮游生物和大型底栖动物多样性与优势种的时空变化研究[J]. 海洋通报, 2022, 41(3): 268-280. doi: 10.11840/j.issn.1001-6392.2022.03.004 [21] XU K, WANG R Q, GUO W H, et al. Factors affecting community structures of benthic macroinvertebrates and microorganisms in Yellow River Delta wetlands: Seasons, habitats, and interactions of organisms[J]. Ecohydrology & Hydrobiology, 2020, 20: 570-583. [22] 邹亮华, 邹伟, 张庆吉, 等. 鄱阳湖大型底栖动物时空演变特征及驱动因素[J]. 中国环境科学, 2021, 41: 2881-2892. [23] 张泽豪, 张景晓, 于淼, 等. 淮河干流信阳段大型底栖动物功能摄食类群时空分布及水质评价[J/OL]. 应用生态学报: 1-10[2023-10-19]. http://kns.cnki.net/kcms/detail/21.1253.q.20230726.1048.002.html. [24] 郝韵, 尚光霞, 丁森, 等. 湟水河流域秋季大型底栖动物群落结构及关键影响因子识别[J]. 水生态学杂志, 2023, 44(2): 64-72. doi: 10.15928/j.1674-3075.202110210364 [25] 黎明杰, 张又, 张颖, 等. 湖滨带开发利用对大型底栖动物群落结构的影响: 以洪泽湖为例[J]. 湖泊科学, 2022, 34: 2055-2070. [26] BARTOLI M, BENELLI S, MAGRI M, et al. Contrasting effects of bioturbation studied in intact and reconstructed estuarine sediments[J]. Water, 2020, 12. [27] REN S Z. Community structure of macroinvertebrates and trophic level of several small lakes in Beijing city[J]. Chinese Journal of Applied Ecology, 1991, 2: 221-225. [28] 李艳, 刘苗, 余业鑫, 等. 氨氮对软体动物生长的影响: 以铜锈环棱螺为例[J]. 水生生物学报, 2023, 47(1): 45-54. [29] 薛庆举, 蔡永久, 龚志军. 不同温度条件下霍甫水丝蚓(Limnodrilus hoffmeisteri)的氮磷排泄[J]. 应用与环境生物学报, 2016, 22(6): 1089-1095. [30] 张志远, 张思九, 林育青, 等. 怒江源区不同层级河流底栖动物群落结构特征及影响因子分析[J/OL]. 环境科学学报: 1-12. (3-10-19].https://doi.org/10.13671/j.hjkxxb.2023.0172. [31] BEISEL J N, POLATERA P U, THOMAS S, et al. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. [J]. Hydrobiologia. 1998, 389: 73-88. [32] 王燕妮, 田伊林, 刘雨薇, 等. 新疆巩乃斯河枯、丰水期大型底栖动物群落结构与环境因子的关系[J]. 生态科学, 2022, 41(5): 208-218.