-
磷超标作为水体富营养化的主要原因,对地表水质量具有重要的影响。我国V类地表水域中磷含量的限值是0.4 mg∙L−1,而I类水质的磷含量限值低至0.02 mg∙L−1,相应质量浓度限制甚至比Cu2+等部分重金属离子的质量浓度限值更低[1]。可见,我国对地表水中磷含量具有严格的要求。水体作为重要的磷汇,承载来自生活污水、农业灌溉、工业生产、矿业开发等各种行业产生的含磷废水;同时,水体底泥作为磷源,可以向水中持续释放溶解态磷[2]。上述各种途径均增大水中磷含量,进而导致水域富营养化而出现水质腐败的现象。因此,降低水体中磷的含量对于保证良好水质具有重要的意义。
已有各种技术可用于水中溶解态磷的去除,如吸附技术、膜分离技术、电化学技术、化学沉淀等。其中,吸附技术具有污染物去除效率高、操作简单、无二次污染等优点而被广泛研究与应用[3-5]。相比于其他阴离子,磷酸根具有更高的电荷密度与配位氧原子数,并且Ca2+、Mg2+、Al3+、Fe3+等金属离子及其氧化物吸附磷酸根后形成难溶性化合物[6-7]。因此,含金属元素的各种吸附材料对磷酸根通常具有高吸附容量、优异的抗干扰能力等突出的吸附性能,如Mg、Al、Fe、Ca、Zr、La等金属氧化物[8]。其中,水铁矿、针铁矿等铁(氢)氧化物因具有高磷酸根吸附容量,同时作为土壤中的天然成分而在环境中磷的迁移转化过程中显示出重要的生态环境意义[9]。MATHUR等研究表明,针铁矿吸附磷酸根PO43−后形成的内圈络合物的稳定常数logK高达30.72±0.14,且远高于SO42−、F−、CrO42−、SeO32−、SeO42−、草酸盐、邻苯二甲酸等;此外,针铁矿吸附H2PO43−形成内层络合物的稳定性比无定型铁(氢)氧化物H2PO43−形成内层络合物的稳定性更高[7,10]。可见,针铁矿等铁(氢)氧化物对磷酸根具有强的吸附亲和力,尤其适合作为水体磷的吸附净化应用。WANG等[11]发现无定型水合氧化铁改性后的硅藻土对磷的吸附容量由0.60 mg∙g−1增至25.02 mg∙g−1(以磷元素计),并且测得水合氧化铁材料对磷的吸附容量为31.25 mg∙g−1。CHEN等[12]发现在Fe-Mn二元氧化物中,尽管锰氧化物可影响材料对磷的吸附过程,但是铁氧化物是决定吸附材料对磷吸附容量的主要因素。
然而,上述各种对水体中磷具有优异吸附性能的吸附材料通常为微纳米粉体材料。虽然微纳米粉体材料对磷具有优异的吸附性能,但微纳米粉体材料同时由于粒径小、表面能大而存在回收困难且进入动植物体内造成细胞死亡、改变正常的生命代谢活动并造成严重的危害[13-16]。为此,微纳米粉体材料在环境中应用的可操作性和生态环境安全性逐渐引起了重视[17]。将上述具有优异功能的微纳米粉体材料固定化而制备整体式宏观环境功能材料已成为当前环境修复技术的研究重点之一[18-19]。近年来,玄武岩纤维因具备物理化学稳定、拉伸模量高以及原料绿色环保等特点,被作为玻璃纤维和碳纤维的替代品而引起了广泛的关注。玄武岩纤维表面能低,尤其适合作为惰性基底材而被用于制备功能性复合材料。SUN等[20]通过多巴胺-亚氨基二乙酸修饰玄武岩纤维材料制备的复合材料对水中Cu2+离子具有优异的吸附性能。XIAO等[21]则发现多巴胺修饰的玄武岩纤维可通过增强表面微生物附着性而提高玄武岩纤维材料的环境污染净化能力。可见,以玄武岩纤维作为载体而制备功能性复合材料将在环境污染净化领域发挥重要的应用价值。
鉴于此,本研究以玄武岩纤维为基底材料,通过表面活化-Fe3+原位水解技术制备了铁羟基氧化物(FeOOH)改性的玄武岩纤维复合材料。通过X-射线衍射(X-ray diffraction, XRD)和扫描电镜(scanning electron microscope, SEM)分析了玄武岩纤维表面的FeOOH晶相结构与形貌,通过傅里叶变换红外光谱(fourier transform infrared spectroscopy, FT-IR)、Zeta电位研究了FeOOH改性玄武岩纤维复合材料的表面化学键结构和表面电荷性质。然后以FeOOH改性玄武岩纤维为整体式吸附材料,研究了复合材料对水中磷的吸附去除性能。在此基础上,通过宏观吸附实验和表面光谱技术揭示了FeOOH改性玄武岩纤维对水中磷酸根的吸附机制。
FeOOH改性玄武岩纤维整体式材料对磷的去除性能及机理
Performance and mechanism of the monolithic material of FeOOH-modified basalt fiber on phosphate removal
-
摘要: 尽管微纳米材料具有优异的环境净化功能,但直接应用微纳米材料具有潜在的生态环境威胁。本研究以惰性玄武岩纤维为基底材料,通过表面活化-Fe3+原位水解方法制备功能性整体式材料(FeOOH@BF)并研究其对水中磷的去除性能。X-射线衍射(X-ray diffraction, XRD)测试显示,在玄武岩纤维表面原位生长的羟基氧化铁(FeOOH)具有α、β两种晶体相结构。FeOOH的附着导致惰性玄武岩纤维表面具有丰富的活性铁羟基吸附位点。吸附结果表明,FeOOH改性的玄武岩纤维整体式材料可有效去除水中的磷酸根。当水中磷含量超过V类地表水质量标准10倍时,5 g∙L−1的FeOOH@BF对水中磷的去除率高于80%。FeOOH@BF对水中磷的去除率随着磷初始质量浓度和pH的增大而降低。动力学吸附结果表明,FeOOH@BF对水中磷的吸附过程在达到饱和吸附以前适合用准一级动力学吸附方程描述。吸附饱和后的FeOOH@BF在0.05 mol∙L−1的HNO3溶液中经过浸泡12 h再生后,其对磷的吸附容量出现明显的降低,但仍能有效去除水中的磷酸根;当饱和吸附后的FeOOH@BF在HNO3溶液中浸泡24 h再生后,FeOOH@BF仍可有效去除水中的磷且吸附性能趋于稳定。FeOOH@BF材料表面的铁羟基发生去质子化释放H+离子,导致磷酸根质子化形成HPO42−,并进一步与材料表面的铁羟基发生配体交换、离子交换和氢键等作用,进而被玄武岩纤维表面包覆的FeOOH所吸附。Abstract: Although the micro/nano-materials have good performance on environment purification, but their direct use will cause potential risk on safety of ecosystem. In this work, the inert basalt fiber was taken as the base material, its surface was activated by NaOH solution and was hydrolyed in Fe3+ solution, then the monolithic material (FeOOH@BF) was prepared for phosphate removal from water. The crystal covered on the surface of basalt fiber was goethite and lepidocrocite, α- and β-FeOOH identified by XRD, these FeOOH could endow the inert basalt fiber with active sites of hydroxyl (Fe-OH) for adsorption. The adsorption experiments demonstrated that FeOOH@BF could effectively remove the phosphate in water. When the concentrate of phosphate was over 10 times that of the allowable value of phosphate in the V standard of surface water, the removing ratio of phosphate by FeOOH@BF was higher than 80% at 5 g∙L−1 of FeOOH@BF dosage. And the removing ratio of phosphate on FeOOH@BF decreased along with the increase of initial concentration of phosphate and pH. The kinetic adsorption showed that the process of P adsorption on FeOOH@BF before saturation adsorption could well fitted the pseudo first-order reaction. Moreover, the FeOOH@BF could still effectively adsorb phosphate from water after regeneration by soaking in 0.05 mol∙L−1 HNO3 for 12 h though its P adsorption capactiy decreased obviously. FeOOH@BF still effectively adsorb phosphate from water with a tendency of stable P adsorption performance after regeneration for 24 h in the HNO3. Further, the adsorption mechanism was investigated by FT-IR spectrum and fitting technology over Guassian function. It was found that the Fe-OH could deprotonate in solution and release H+ from the FeOOH@BF to solution, then phosphate in solution would combine with H+ and form HPO42− species, following by the adsorption by FeOOH@BF through ligand exchange, ion exchange and hydrogen interaction with hydroxyl (Fe-OH) on its surface.
-
Key words:
- basalt fiber /
- FeOOH /
- monolithic material /
- phosphate /
- adsorption
-
-
[1] 中华人民共和国生态环境部. 地表水环境质量标准: GB 3838-2002[S]. 中国: 国家环境保护总局, 国家质量监督检验检疫总局, 2002. [2] ZHANG J Z, HUANG X L. Relative importance of solid-phase phosphorus and iron on the sorption behavior of sediments[J]. Environmental Science & Technology, 2007, 41: 2789-2795. [3] USMAN M O, ATURAGABA G, NTALE M, et al. A review of adsorption technique for removal of phosphates from wastewater[J]. Water Science and Technology, 2022, 86: 3113-3132. doi: 10.2166/wst.2022.382 [4] 卓亿元, 刘草葱, 姜蕾, 等. 铁/锰矿基人工湿地脱氮除磷性能及机理[J]. 环境工程学报, 2023, 17(5): 1441-1450. [5] 李迎春, 董良飞, 仝驰, 等. 稀土改性凹凸棒土对低浓度磷的吸附性能[J]. 环境工程学报, 2021, 15(10): 3214-3222. [6] HINKLE M A G, WANG Z M, GIAMMAR D E, et al. Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces[J]. Geochimica et Cosmocheimica Acta, 2015, 158: 130-146. doi: 10.1016/j.gca.2015.02.030 [7] MATHUR S S, DZOMBAK D A. Surface complexation modeling: Goethite[J]. Interface Science and Technology, 2006, 11: 443-468. [8] ZHANG P, HE M M, HUO S L, et al. Recent progress in metal-based composites toward adsorptive removal of phosphate: Mechanisms, behaviors, and prospects[J]. Chemical Engineering Journal, 2022, 446: 137081. doi: 10.1016/j.cej.2022.137081 [9] FONTES M P F, WEED S B. Phosphate adsorption by clays from Brazilian Oxisols, relationships with specific surface area and mineralogy[J]. Geoderma, 1996, 72: 37-51. doi: 10.1016/0016-7061(96)00010-9 [10] DZOMBAK D A, MOREL F M M. Surface Complexation Modeling: Hydrous Ferric Oxide[M]. Wiley-Interscience, New York, 1990. [11] WANG A, LIN Y, WU D Y, et al. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture[J]. Chemosphere, 2016, 144: 1290-1298. doi: 10.1016/j.chemosphere.2015.10.015 [12] CHEN P, ZHOU Y F, XIE Q Q, et al. Phosphate adsorption kinetics and equilibria on natural iron and manganses oxide composites[J]. Journal of Environmental Management, 2022, 323: 116222. doi: 10.1016/j.jenvman.2022.116222 [13] VON MOOS N, SLAVEYKOVA V I. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae-state of the aer and knowledge gaps[J]. Nanotoxicology, 2014, 8: 605-630. doi: 10.3109/17435390.2013.809810 [14] NG E L, LWANGA E H, ELDRIDGE S M, et al. An overview of microplastic and nanoplastic pollution in agroecosytems[J]. Science of the Total Environment, 2018, 627: 1377-1388. doi: 10.1016/j.scitotenv.2018.01.341 [15] LORIGNON F, GOSSARD A, CARBONI M. Hierarchically porous monolithic MOFs: An pngoing challenge for industrial-scale effluent treatment[J]. Chemical Engineering Journal, 2020, 393: 124765. doi: 10.1016/j.cej.2020.124765 [16] GOSWAMI L, KIM K-H, DEEP A, et al. Engineered nano particles: Nature, behavior, and effect on the environment[J]. Journal of Environmental Management, 2021, 196: 297-315. [17] WANG L W, WU W M, BOLAN N S, et al. Environmental fate, toxicity and risk management strategies of nanoparticles in the ecvironment: Current status and future perspectives[J]. Journal of Hazardous Materials, 2021, 401: 123415. doi: 10.1016/j.jhazmat.2020.123415 [18] WAN W C, ZHANG R Y, MA M Z, et al. Monolithic aerogel photocatalysts: A review[J]. Journal of Materials Chemistry A, 2018, 6: 784-775. [19] 张瑞阳, 李金成, 张艾丽, 等. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 7-22. [20] SUN Y, ZHANG P Y, ZHA Q Y, et al. Novel iminodiacetic acid functionalized basalt fiber for adsorption of Cu(II) ions in batch experiments[J]. Journal of Dispersion Science and Technology, 2021, 1947851. [21] XIAO J, CHEN M, HUANG M J, et al. Systematic evaluation of PDA-PAM-MAH-modified basalt fiber as biofilm carrier for wastewater treatment[J]. Environmental Technology, 2022, 43: 1328-1339. doi: 10.1080/09593330.2020.1829085 [22] WANG R, XU H J, LIU X, et al. In-situ growth of iron oxides with MIL-100(Fe) enhances its adsorption for selenite[J]. Surfaces and Interfaces, 2022, 34: 102325. doi: 10.1016/j.surfin.2022.102325 [23] 王锐, 方敦, 牛鹏举, 等. Mn2+掺杂对晶质氧化铁结构与红外光谱特征的影响[J]. 土壤学报, 2020, 57(4): 898-907. [24] CORNELL R M, SCHWERTMANN U. The Iron Oxides, Structure, Properties, Reactions Occurences, Uses [M]. Wiley-VCH, Weinheim, Germany, 2003. [25] KIM J, LI W, PHILIPS B L, et al. Phosphate adsorption on the iron oxyhydroxides goethite ( α-FeOOH), akaganeite ( β-FeOOH), and lepidocrocite ( γ-FeOOH): A 31P NMR study[J]. Energy & Environmental Science, 2011, 4: 4298-4305. [26] ZHANG X, YAO H, LEI X B, et al. A comparative study for phosphate adsorption on amorphous FeOOH and goethite ( α-FeOOH): An investigation of relationship between the surface chemistry and structure[J]. Environmental Research, 2021, 199: 111223. doi: 10.1016/j.envres.2021.111223 [27] 刘鑫, 吕青檐, 魏世勇. 硅/铝掺杂对针铁矿的表面性质和吸附磷的影响[J]. 湖北民族大学(自然科学版), 2022, 40(3): 282-288. [28] 王锐, 龚勇, 许海娟, 等. 不同调节剂制备MOF-Fe的性质及对Se(IV)的吸附性能[J]. 无机化学学报, 2018, 34(5): 906-916. [29] 王锐, 徐海娟, 魏世勇, 等. 磷酸盐共存对MOF-Fe吸附亚硒酸盐的影响[J]. 环境科学学报, 2019, 39(3): 737-746. [30] ISABEL TEJEDOR-TEJEDOR M, ANDERSON M A. Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility[J]. Langmuir, 1990, 6: 602-611. doi: 10.1021/la00093a015 [31] ELZINGA E J, SPARKS D L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation[J]. Journal of Colloid and Interface Science, 2007, 308: 53-70. doi: 10.1016/j.jcis.2006.12.061 [32] 许海娟, 王锐, 魏世勇, 等. 蒙脱石-氧化铁复合体的表征及其对不同形态磷的吸附特性[J]. 土壤学报, 2019, 56(6): 1381-1389.