[1] 中华人民共和国生态环境部. 地表水环境质量标准: GB 3838-2002[S]. 中国: 国家环境保护总局, 国家质量监督检验检疫总局, 2002.
[2] ZHANG J Z, HUANG X L. Relative importance of solid-phase phosphorus and iron on the sorption behavior of sediments[J]. Environmental Science & Technology, 2007, 41: 2789-2795.
[3] USMAN M O, ATURAGABA G, NTALE M, et al. A review of adsorption technique for removal of phosphates from wastewater[J]. Water Science and Technology, 2022, 86: 3113-3132. doi: 10.2166/wst.2022.382
[4] 卓亿元, 刘草葱, 姜蕾, 等. 铁/锰矿基人工湿地脱氮除磷性能及机理[J]. 环境工程学报, 2023, 17(5): 1441-1450.
[5] 李迎春, 董良飞, 仝驰, 等. 稀土改性凹凸棒土对低浓度磷的吸附性能[J]. 环境工程学报, 2021, 15(10): 3214-3222.
[6] HINKLE M A G, WANG Z M, GIAMMAR D E, et al. Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces[J]. Geochimica et Cosmocheimica Acta, 2015, 158: 130-146. doi: 10.1016/j.gca.2015.02.030
[7] MATHUR S S, DZOMBAK D A. Surface complexation modeling: Goethite[J]. Interface Science and Technology, 2006, 11: 443-468.
[8] ZHANG P, HE M M, HUO S L, et al. Recent progress in metal-based composites toward adsorptive removal of phosphate: Mechanisms, behaviors, and prospects[J]. Chemical Engineering Journal, 2022, 446: 137081. doi: 10.1016/j.cej.2022.137081
[9] FONTES M P F, WEED S B. Phosphate adsorption by clays from Brazilian Oxisols, relationships with specific surface area and mineralogy[J]. Geoderma, 1996, 72: 37-51. doi: 10.1016/0016-7061(96)00010-9
[10] DZOMBAK D A, MOREL F M M. Surface Complexation Modeling: Hydrous Ferric Oxide[M]. Wiley-Interscience, New York, 1990.
[11] WANG A, LIN Y, WU D Y, et al. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture[J]. Chemosphere, 2016, 144: 1290-1298. doi: 10.1016/j.chemosphere.2015.10.015
[12] CHEN P, ZHOU Y F, XIE Q Q, et al. Phosphate adsorption kinetics and equilibria on natural iron and manganses oxide composites[J]. Journal of Environmental Management, 2022, 323: 116222. doi: 10.1016/j.jenvman.2022.116222
[13] VON MOOS N, SLAVEYKOVA V I. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae-state of the aer and knowledge gaps[J]. Nanotoxicology, 2014, 8: 605-630. doi: 10.3109/17435390.2013.809810
[14] NG E L, LWANGA E H, ELDRIDGE S M, et al. An overview of microplastic and nanoplastic pollution in agroecosytems[J]. Science of the Total Environment, 2018, 627: 1377-1388. doi: 10.1016/j.scitotenv.2018.01.341
[15] LORIGNON F, GOSSARD A, CARBONI M. Hierarchically porous monolithic MOFs: An pngoing challenge for industrial-scale effluent treatment[J]. Chemical Engineering Journal, 2020, 393: 124765. doi: 10.1016/j.cej.2020.124765
[16] GOSWAMI L, KIM K-H, DEEP A, et al. Engineered nano particles: Nature, behavior, and effect on the environment[J]. Journal of Environmental Management, 2021, 196: 297-315.
[17] WANG L W, WU W M, BOLAN N S, et al. Environmental fate, toxicity and risk management strategies of nanoparticles in the ecvironment: Current status and future perspectives[J]. Journal of Hazardous Materials, 2021, 401: 123415. doi: 10.1016/j.jhazmat.2020.123415
[18] WAN W C, ZHANG R Y, MA M Z, et al. Monolithic aerogel photocatalysts: A review[J]. Journal of Materials Chemistry A, 2018, 6: 784-775.
[19] 张瑞阳, 李金成, 张艾丽, 等. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 7-22.
[20] SUN Y, ZHANG P Y, ZHA Q Y, et al. Novel iminodiacetic acid functionalized basalt fiber for adsorption of Cu(II) ions in batch experiments[J]. Journal of Dispersion Science and Technology, 2021, 1947851.
[21] XIAO J, CHEN M, HUANG M J, et al. Systematic evaluation of PDA-PAM-MAH-modified basalt fiber as biofilm carrier for wastewater treatment[J]. Environmental Technology, 2022, 43: 1328-1339. doi: 10.1080/09593330.2020.1829085
[22] WANG R, XU H J, LIU X, et al. In-situ growth of iron oxides with MIL-100(Fe) enhances its adsorption for selenite[J]. Surfaces and Interfaces, 2022, 34: 102325. doi: 10.1016/j.surfin.2022.102325
[23] 王锐, 方敦, 牛鹏举, 等. Mn2+掺杂对晶质氧化铁结构与红外光谱特征的影响[J]. 土壤学报, 2020, 57(4): 898-907.
[24] CORNELL R M, SCHWERTMANN U. The Iron Oxides, Structure, Properties, Reactions Occurences, Uses [M]. Wiley-VCH, Weinheim, Germany, 2003.
[25] KIM J, LI W, PHILIPS B L, et al. Phosphate adsorption on the iron oxyhydroxides goethite ( α-FeOOH), akaganeite ( β-FeOOH), and lepidocrocite ( γ-FeOOH): A 31P NMR study[J]. Energy & Environmental Science, 2011, 4: 4298-4305.
[26] ZHANG X, YAO H, LEI X B, et al. A comparative study for phosphate adsorption on amorphous FeOOH and goethite ( α-FeOOH): An investigation of relationship between the surface chemistry and structure[J]. Environmental Research, 2021, 199: 111223. doi: 10.1016/j.envres.2021.111223
[27] 刘鑫, 吕青檐, 魏世勇. 硅/铝掺杂对针铁矿的表面性质和吸附磷的影响[J]. 湖北民族大学(自然科学版), 2022, 40(3): 282-288.
[28] 王锐, 龚勇, 许海娟, 等. 不同调节剂制备MOF-Fe的性质及对Se(IV)的吸附性能[J]. 无机化学学报, 2018, 34(5): 906-916.
[29] 王锐, 徐海娟, 魏世勇, 等. 磷酸盐共存对MOF-Fe吸附亚硒酸盐的影响[J]. 环境科学学报, 2019, 39(3): 737-746.
[30] ISABEL TEJEDOR-TEJEDOR M, ANDERSON M A. Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility[J]. Langmuir, 1990, 6: 602-611. doi: 10.1021/la00093a015
[31] ELZINGA E J, SPARKS D L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation[J]. Journal of Colloid and Interface Science, 2007, 308: 53-70. doi: 10.1016/j.jcis.2006.12.061
[32] 许海娟, 王锐, 魏世勇, 等. 蒙脱石-氧化铁复合体的表征及其对不同形态磷的吸附特性[J]. 土壤学报, 2019, 56(6): 1381-1389.