-
病原微生物经市政污水及合流制溢流进入地表水体,对公共卫生及生态系统产生了极大威胁[1]。目前应用最广泛的消毒方法为氯消毒、臭氧消毒和紫外消毒。氯消毒应用成本低且消毒效率高,但其消毒过程中产生的卤代消毒副产物具有较强毒性;臭氧消毒效率高,接触时间短,但制备成本较高,且无持续消毒作用;紫外线主要通过破坏细胞内遗传物质 (DNA和RNA) 抑制微生物繁殖[2],消毒效率高,但在消毒过程中存在拖尾现象[3]、消毒效果易受水质影响且存在一定的光复活风险[4-7]。因此寻找绿色、高效的消毒方法意义重大。
过氧乙酸(peracetic acid,CH3C(O)OOH),简称PAA,是一种新兴氧化剂,相比于传统消毒剂具有较强的氧化性,其氧化还原电位(E0 = 1.96 eV)高于过氧化氢(E0=1.8 eV)、氯(E0=1.4 eV)及二氧化氯(E0=1.5 eV),且在消毒过程中产生的消毒副产物较少[2, 8]。PAA最早于20世纪初应用于食品工业中[9],近年来欧美国家将其用于市政污水和雨水消毒[1, 10-11],其在灭活细菌、真菌及芽孢时有较好效果[12-13]。PAA通过扩散作用从细胞膜渗透进入细胞,氧化细胞内的蛋白质和酶从而使细胞失活,而这种氧化灭活作用通常较弱[14-15],且无法消除病原菌中的抗生素的抗性基因[16]。
紫外活化PAA(UV/PAA)体系是一种新兴高级氧化体系,PAA被UV活化后可产生羟基自由基(HO·)、有机自由基(CH3C(O)O·,CH3C(O)OO·)、超氧自由基(O2•−)和单线态氧(1O2)等活性物质[17]。目前该体系广泛应用于水中微污染物去除[18],体系中的UV辐照、PAA及UV活化PAA产生的自由基均具有较好的消毒潜力[19-20]。相较于单独PAA体系,UV/PAA体系能够显著提高灭活效率,相较单独UV体系,UV/PAA体系能改善拖尾现象,快速实现高灭活率,且体系内自由基对细胞膜造成的破坏能够限制微生物的自我修复[6],降低复活风险,具有广阔的应用前景。但目前对于应用UV/PAA体系消毒时工艺参数和背景物质的影响、氧化灭活机理及反应过程中细胞特征变化的研究较少。
大肠杆菌是常见的病原微生物,也是水质分析中常用的指标菌[21]。故本研究选取大肠杆菌作为目标微生物,考察了UV/PAA体系中工艺、水质参数对大肠杆菌灭活效率的影响,并探究了其灭活机理,以期为深度理解UV/PAA体系消毒机制及其应用潜力提供理论支持。
紫外/过氧乙酸灭活大肠杆菌的效能及机理
Inactivation of Escherichia coli by peracetic acid combined with ultraviolet: Efficiency and mechanism
-
摘要: 病原微生物对公共卫生及生态系统产生了极大威胁,为研究紫外/过氧乙酸体系(UV/PAA)的消毒效能,以大肠杆菌为目标微生物,考察了PAA和UV投加剂量、不同背景物质对大肠杆菌灭活的影响,检测了体系中生成的活性物种并观察了反应过程中细胞形态变化。结果表明:在PAA浓度为60 μmol·L−1和UV光强为2.25×10−7 Einstein·(s·L)−1的条件下反应3 min后,大肠杆菌的灭活率能达到4.71 log,相较单独PAA体系和单独UV体系分别提高了2.76 log和0.82 log,且灭活率随PAA浓度和UV辐射剂量增加而提高。NH4+和Cl−对于UV/PAA体系灭活大肠杆菌有轻微的抑制作用,而腐殖酸(HA)对于体系有较强的抑制作用。自由基淬灭实验和电子顺磁共振检测结果表明,UV/PAA体系灭活大肠杆菌的主要活性物质为羟基自由基(HO·)和有机自由基(RO·)。激光共聚焦显微镜和扫描电子显微镜观察的结果表明,UV/PAA体系灭活大肠杆菌时,会引起细胞膜轻微破损,但并不会导致严重的裂解。反应溶液中溶解性成分的荧光光谱分析表明大肠杆菌灭活时释放的有机物会随着细胞膜破损而增加,但释放的类蛋白大分子物质最终可被氧化为类腐殖酸小分子有机物。Abstract: Pathogens pose great risks to public health and ecosystems. In this study, we investigated the efficiency and mechanism of the UV/peracetic acid (UV/PAA) process in inactivating Escherichia coli (E. coli) which served as the reference microorganism. The effects of PAA, UV dosages and water matrices on the inactivation rates of E. coli were systematically assessed, the generated reactive species were detected and the changes in cell morphology during inactivation were observed. Results showed that with a PAA concentration of 60 μmol·L−1 and UV intensity of 2.25×10−7 Einstein·(s·L)−1, the inactivation rate of E. coli reached 4.71 log after a 3 min reaction. An increase of 2.76 log and 0.82 log could be realized compared with that in the PAA alone and UV alone processes, respectively. Then, elevating the PAA concentrations and UV irradiation dosages would promote the inactivation efficiency. The inactivation rates of E. coli under UV/PAA were slightly inhibited by NH4+ and Cl−, while humic acid (HA) exhibited a strong inhibitory effect. Moreover, the quenching experiments and electron paramagnetic resonance detection suggested that both hydroxyl (HO·) and organic radicals (RO·) contributed to the inactivation of E. coli. The observation using a confocal laser scanning microscope and a scanning electron microscope revealed that the inactivation of E. coli under UV/PAA caused slight damage to the cell membrane but did not result in complete cell integrity loss. Although the results from the fluorescence excitation-emission matrices analysis suggested the release of bacterial organic matter increased with cell membrane damage in the UV/PAA process, the released protein-like components with high molecular weight could be subsequently oxidized into humic acids-like components with low molecular weight.
-
Key words:
- ultraviolet /
- peracetic acid /
- Escherichia coli /
- disinfection /
- radicals
-
表 1 荧光体积积分法各区域代表物质
Table 1. Representative components in each region by fluorescence regional integration method
荧光区域 物质种类 激发波长(Ex)和
发射波长(Em)/nm代表性物质 Ⅰ 芳香类蛋白类物质Ⅰ Ex<250,Em<330 酪氨酸 Ⅱ 芳香类蛋白类物质Ⅱ Ex<250,330<Em <380 色氨酸 Ⅲ 类富里酸物质 Ex<250,Em >380 富里酸 Ⅳ 溶解性微生物代谢产物 Ex>250,Em<380 蛋白质 Ⅴ 类腐殖酸物质 Ex>250,Em>380 腐殖酸 -
[1] CHHETRI R K, BONNERUP A, ANDERSEN H R. Combined sewer overflow pretreatment with chemical coagulation and a particle settler for improved peracetic acid disinfection[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 372-379. doi: 10.1016/j.jiec.2016.03.049 [2] HASSABALLAH A H, BHATT T, NYITRAI J, et al. Inactivation of E. coli, Enterococcus spp., somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA) , sodium hypochlorite, and combined PAA-ultraviolet disinfection[J]. Environmental Science Water Research & Technology, 2020, 6, 197. [3] VITZILAIOU E, KURIA A M, SIEGUMFELDT H, et al. The impact of bacterial cell aggregation on UV inactivation kinetics[J]. Water Research,2021, 204: 117593. doi: 10.1016/j.watres.2021.117593 [4] LIU S, QU H, YANG D, et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant[J]. Water Research, 2018, 136: 131-136. doi: 10.1016/j.watres.2018.02.036 [5] RAJAB M, HEIM C, LETZEL T, et al. Electrochemical disinfection using boron-doped diamond electrode–The synergetic effects of in situ ozone and free chlorine generation[J]. Chemosphere,2015, 121: 47-53. doi: 10.1016/j.chemosphere.2014.10.075 [6] SUN P, ZHANG T, MEJIA-TICKNER B, et al. Rapid disinfection by peracetic acid combined with UV irradiation[J]. Environmental Science & Technology Letters,2018, 5(6): 400-404. [7] LI G, WANG W, HUO Z, et al. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli[J]. Water Research,2017, 126: 134-143. doi: 10.1016/j.watres.2017.09.030 [8] LUUKKONEN T, PEHKONEN S O. Peracids in water treatment: A critical review[J]. Critical Reviews in Environmental Science and Technology,2017, 47(1): 1-39. doi: 10.1080/10643389.2016.1272343 [9] FRAISE A P, MAILLARD J-Y, SATTAR S A. Russell, Hugo & Ayliffe's principles and practice of disinfection preservation and sterilization[M]. Oxford: Wiley-Blackwell, 2013. [10] MANOLI K, SARATHY S, MAFFETTONE R, et al. Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid[J]. Water Research, 2019, 153: 251-262. doi: 10.1016/j.watres.2019.01.022 [11] KOIVUNEN J, HEINONEN-TANSKI H. Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters[J]. Water Research, 2005, 39(18): 4445-4453. doi: 10.1016/j.watres.2005.08.016 [12] STRAUS D L, MEINELT T, FARMER B D, et al. Peracetic acid is effective for controlling fungus on channel catfish eggs[J]. Journal of Fish Diseases, 2012, 35(7): 505-511. doi: 10.1111/j.1365-2761.2012.01383.x [13] LIN W, ZUO J, LI K, et al. Pre-exposure of peracetic acid enhances its subsequent combination with ultraviolet for the inactivation of fungal spores: Efficiency, mechanisms, and implications[J]. Water Research, 2023, 229: 119404. doi: 10.1016/j.watres.2022.119404 [14] LEAPER S. Synergistic killing of spores of Bacillus subtilis by peracetic acid and alcohol[J]. International Journal of Food Science & Technology, 1984, 19(3): 355-360. [15] MCFADDEN M, LOCONSOLE J, SCHOCKLING A J, et al. Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH[J]. Science of the Total Environment, 2017, 599-600: 533-539. doi: 10.1016/j.scitotenv.2017.04.179 [16] TUROLLA A, SABATINO R, FONTANETO D, et al. Defence strategies and antibiotic resistance gene abundance in enterococci under stress by exposure to low doses of peracetic acid[J]. Chemosphere, 2017, 185: 480-488. doi: 10.1016/j.chemosphere.2017.07.032 [17] ZHANG T, HUANG C. Modeling the kinetics of UV/peracetic acid advanced oxidation process[J]. Environmental Science & Technology, 2020, 54(12): 7579-7590. [18] HOLLMAN J, DOMINIC J A, ACHARI G. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2[J]. Chemosphere, 2020, 248: 125911. doi: 10.1016/j.chemosphere.2020.125911 [19] PARK E, LEE C, BISESI M, et al. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods[J]. Journal of Water and Health. 2014, 12(1): 13-23. doi: 10.2166/wh.2013.002 [20] BEBER DE SOUZA J, QUEIROZ V F, JERANOSKI R F, et al. Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV[J]. International Journal of Photoenergy, 2015, 2015: 1-7. [21] VINET L, ZHEDANOV A. A‘missing’family of classical orthogonal polynomials[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(8): 85201. [22] WANG Z, WANG J, XIONG B, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: Efficiency and mechanisms[J]. Environmental Science & Technology, 2020, 54(1): 464-475. [23] RAHN R O. Potassium iodide as a chemical actinometer for 254 nm radiation: Use of iodate as an electron scavenger[J]. Photochemistry and Photobiology, 1997, 66(4): 450-455. doi: 10.1111/j.1751-1097.1997.tb03172.x [24] LIN Q S, DONG X L, XI S H, et al. Optimizing waste activated sludge disintegration by investigating multiple electrochemical pretreatment conditions: Performance, mechanism and modeling[J]. Science of the Total Environment,2023, 870: 162025. doi: 10.1016/j.scitotenv.2023.162025 [25] WAN Y, XIE P, WANG Z, et al. Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/H2O2: Variation of characteristics and alleviation of ultrafiltration membrane fouling[J]. Water Research, 2019, 158: 213-226. doi: 10.1016/j.watres.2019.04.034 [26] BAI M, TIAN Y, YU Y, et al. Application of a hydroxyl-radical-based disinfection system for ballast water[J]. Chemosphere, 2018, 208: 541-549. doi: 10.1016/j.chemosphere.2018.06.010 [27] KOIVUNEN J, HEINONEN-TANSKI H. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments[J]. Water Research,2005, 39(8): 1519-1526. doi: 10.1016/j.watres.2005.01.021 [28] LUUKKONEN T, HEYNINCK T, RÄMÖ J, et al. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion[J]. Water Research. 2015, 85: 275-285. doi: 10.1016/j.watres.2015.08.037 [29] 杨敏, 尚巍, 李鹏峰, 等. 城镇污水处理厂次氯酸钠消毒影响因素及优化研究[J]. 中国给水排水, 2022, 38(9): 76-81. doi: 10.19853/j.zgjsps.1000-4602.2022.09.012 [30] 冯璁, 林莉, 李青云. 氯离子浓度与电流密度对电解抑制铜绿微囊藻生长的影响[J]. 长江科学院院报, 2015, 32(6): 53-58. [31] 刘伟, 蔡广强, 张金松, 等. 南方某市水源水蛋白质、腐殖酸浓度变化与去除[J]. 中国给水排水, 2017, 33(17): 41-45. doi: 10.19853/j.zgjsps.1000-4602.2017.17.010 [32] SHAH A D, LIU Z, SALHI E, et al. Peracetic acid oxidation of saline waters in the absence and presence of H2O2 secondary oxidant and disinfection byproduct formation[J]. Environmental Science & Technology, 2015, 49(3): 1698-1705. [33] ZHANG L, LIU Y, FU Y. Degradation kinetics and mechanism of diclofenac by UV/peracetic acid[J]. RSC Advances, 2020, 10(17): 9907-9916. doi: 10.1039/D0RA00363H [34] CHEN S, CAI M, LIU Y, et al. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process[J]. Water Research, 2019, 150: 153-161. doi: 10.1016/j.watres.2018.11.044 [35] XIE P, MA J, LIU W, et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69: 223-233. doi: 10.1016/j.watres.2014.11.029 [36] 蒋励铭, 卞静, 张晓晖, 等. 电化学活化过氧乙酸灭活水中大肠杆菌[J]. 中国环境科学, 2023, 43(8): 3966-3973. doi: 10.3969/j.issn.1000-6923.2023.08.012 [37] ZHANG B, LI W, ZHANG H, et al. Activation of peracetic acid by trace ferrous ion and vacuum ultraviolet for the ultrafast degradation of PPCPs[J]. ACS ES& T Water, 2022, 2(12): 2590-2601. [38] AO X W, WANG W, SUN W, et al. Degradation and transformation of norfloxacin in medium-pressure ultraviolet/peracetic acid process: An investigation of the role of pH[J]. Water Research, 2021, 203: 117458. doi: 10.1016/j.watres.2021.117458 [39] AO X W, JUSSI E, HUANG C H, et al. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review[J]. Water Research, 2021, 188: 116479. doi: 10.1016/j.watres.2020.116479 [40] BAI Y, SHI C, ZHOU Y, et al. Enhanced inactivation of Escherichia coli by ultrasound combined with peracetic acid during water disinfection[J]. Chemosphere,2023, 322: 138095. doi: 10.1016/j.chemosphere.2023.138095 [41] CHEN S, LI X, WANG Y H, et al. Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states[J]. Water Research, 2018, 142: 279-288. doi: 10.1016/j.watres.2018.05.055 [42] FANG J, YANG X, MA J, et al. Characterization of algal organic matter and formation of DBPs from chlor (am) ination[J]. Water Research, 2010, 44(20): 5897-5906. doi: 10.1016/j.watres.2010.07.009