-
饮用水水质保障和提升关系到所有城乡居民的健康福祉。由于水源微污染情况日益复杂,当前关注的饮用水水质指标已从基础性的病原微生物、金属离子扩展到消毒副产物(DBPs,disinfection by-products)和微量有机污染物(TrOCs,trace organic contaminants)等方面。我国东部河网地区农业发达、工业企业众多,在促进经济发展的同时也使得当地水源面临多种微污染风险[1-2]。国内水厂普遍采用混凝-沉淀-过滤的传统工艺,对水源水中出现的农药、抗生素等TrOCs难以有效去除。因此,升级改造水厂工艺、研发匹配现阶段原水特性和出水水质需求的工艺单元成为当务之急。纳滤(NF,nanofiltration)作为新一代水处理技术[3-4],其过滤性能介于超滤与反渗透之间,能在有效去除水中污染物的同时保留有益微量元素,在饮用水水质提升中具有良好的应用前景,但运行成本高于传统工艺。本文以浙江某水厂为研究对象,评估了水厂现有净水工艺对常规水质指标、金属离子、DBPs和TrOCs等的控制效果;同时,采用商用纳滤膜对水厂滤后水进行了处理,对比分析相关水质指标。本研究可增加对我国东部河网地区饮用水厂供水水质的了解,为纳滤技术在水厂升级改造中的应用提供参考。
东部河网地区某饮用水厂运行效果分析及纳滤净化
Performance analysis of a drinking water treatment plant in river-network regions of eastern China and water purification by nanofiltration
-
摘要: 为考察我国东部河网地区饮用水水质,本文以浙江某饮用水厂为研究对象,评估了水厂现有净水工艺(混凝-沉淀-炭砂过滤)对常规水质指标、金属离子、消毒副产物(DBPs)和微量有机污染物(TrOCs)等的控制效果,并基于小试实验探究了纳滤工艺对水质的提升情况。结果表明,水厂现有工艺处理后的出水能满足国家饮用水卫生标准要求,而纳滤工艺可显著提高部分常规指标以及富里酸、蛋白质类有机物的去除效果,减少50%以上的DBPs生成量。水厂原水和滤后水中检出了22种TrOCs,其中磺胺甲恶唑、美托洛尔、磺胺噻唑、咖啡因、阿替洛尔、诺氟沙星等的纳滤去除率为62%~100%。对于经济条件较好而水源微污染风险较高的东部河网地区,可以考虑以纳滤工艺为核心进行水厂升级改造,提升饮用水水质。Abstract: To understand the drinking water quality in Eastern China where a complex river network exists, this study investigated the control effects of regular water quality indice, metal ions, disinfection by-products and trace organic contaminants (TrOCs) by the current water purification process (coagulation-sedimentation-activated carbon/sand filtration) of a drinking water treatment plant in Zhejiang Province. Meanwhile, the efficacy of water quality improvement by nanofiltration was also evaluated based on the bench-scale tests. Results show that the produced water by the conventional drinking water treatment process could meet the national standards for drinking water quality, while the nanofiltration treatment significantly increased the removal rates of some regular water quality indice, fulvic acid and protein organics, and reduced over 50% generation of disinfection by-products. Twenty-two different TrOCs were detected in the raw water and activated carbon/sand-filtered water, and the removal rates of sulfamethoxazole, metoprolol, sulfathiazole, caffeine, atenolol and norfloxacin by nanofiltration ranged between 62%-100%. For drinking water treatment plants located in developed regions with a high risk of source water contamination by TrOCs, nanofiltration could be employed as the core treatment process to improve the treated water quality.
-
表 1 水厂原水、滤后水及纳滤产水的常规水质指标
Table 1. Regular water quality indices of raw water, filtered water and NF permeate in the drinking water treatment plant
时间 水样 水质指标 pH 浊度/
NTU电导率/
(μS·cm−1)TDS/
(mg·L−1)总碱度/
(mg·L−1)总硬度/
(mg·L−1)CODMn/
(mg·L−1)SO42-/
(mg·L−1)Cl−/
(mg·L−1)NO3−/
(mg·L−1)2022年6月 原水 7.0±0.1 1.05±0.16 95.0±0.7 45.0±0.3 31.9±1.0 29.3±0.5 2.07±0.17 2.07±0.17 7.2±0.4 1.0±0.1 滤后水 7.0±0.1 0.06±0.01 110.2±1.4 51.0±0.7 34.5±2.2 34.1±2.4 0.97±0.11 10.1±0.2 6.2±0.6 1.0±0.1 纳滤产水 6.9±0.1 0.05±0.01 73.4±1.6 33.3±0.7 25.0±3.3 20.3±1.2 0.18±0.14 2.2±0.4 3.0±0.2 1.2±0.1 2023年2月 原水 6.9±0.1 1.88±0.06 82.7±0.6 39.1±0.3 21.0±1.0 25.5±0.7 2.07±0.01 8.6±0.1 3.2±0.1 2.9±0.1 滤后水 7.1±0.1 0.06±0.01 93.7±0.1 44.5±0.1 22.0±1.4 29.0±1.4 1.02±0.08 8.9±0.1 4.7±0.1 2.7±0.1 纳滤产水 6.9±0.1 0.04±0.01 38.2±0.7 18.3±0.4 11.0±0.7 11.5±0.7 0.35±0.01 0.6±0.1 3.2±0.1 2.4±0.1 表 2 水厂原水、滤后水及纳滤产水中药物类污染物检出情况
Table 2. Detection of trace organic contaminants in raw water, filtered water and NF permeate
污染物名称 分子质量/Da 原水 滤后水 纳滤产水 咖啡因(CAF, caffeine) 194.2 √ √ √ 卡马西平(CBZ, carbamazepine) 236.3 √ √ √ 氨苯砜(DDS, diaminodiphenylsulfone) 248.3 √ √ √ 避蚊胺(DEET, N,N-Diethyl-3-methylbenzamide 191.3 √ 地西泮(DEP, diazepam) 284.7 √ √ 美托洛尔(MET, metoprolol) 267.4 √ √ √ 咪康唑(MIC, miconazole) 416.1 √ √ √ 米氮平(MZP, mirtazapine) 265.4 √ √ 西地那非(SDN, sildenafil) 474.6 √ √ √ 司帕沙星(SPX, sparfloxacin) 392.4 √ 磺胺二甲氧嘧啶(SDM, sulfadimethoxine) 310.3 √ √ √ 磺胺喹恶啉(SQ, sulfaquinoxaline) 300.3 √ √ 磺胺甲恶唑 (SMX, sulfamethoxazole) 253.3 √ √ √ 磺胺噻唑(STZ, sulfathiazole) 255.3 √ √ 磺胺甲基嘧啶(SMR, sulfamerazine) 264.3 √ 磺胺甲二唑(SML,sulfamethizole) 270.3 √ 甲氧苄啶(TMP, trimethoprim) 290.3 √ √ √ 普萘洛尔(PROP, propranolol) 259.3 √ √ √ 苯扎贝特(BF, bezafibrate) 361.8 √ √ √ 阿替洛尔(ATE, atenolol) 266.3 √ √ 诺氟沙星(NOR, norfloxacin) 319.3 √ √ √ 多西环(DOX, doxycycline hydrochloride) 444.4 √ √ √ -
[1] 曲久辉. 东部河网地区农村供排水一体化技术及应用[J]. 中国环境管理, 2017, 9(3): 112+114. [2] 何锡君, 王贝, 邱超, 等. 浙江省农村饮用水水质状况调查与分析[J]. 中国水利, 2019(11): 40-42. doi: 10.3969/j.issn.1000-1123.2019.11.022 [3] VAN DER BRUGGEN B, VANDECASTEELE C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry[J]. Environmental Pollution, 2003, 122(3): 435-445. doi: 10.1016/S0269-7491(02)00308-1 [4] 李昆, 王健行, 魏源送. 纳滤在水处理与回用中的应用现状与展望[J]. 环境科学学报, 2016, 36(8): 2714-2729. [5] 王智. 纳滤截留无机离子特性及机理研究[D]. 北京: 清华大学, 2018. [6] 张雅君, 杜婷婷, 孙丽华, 等. 拉森指数对再生水管网腐蚀状况的影响研究[J]. 腐蚀科学与防护技术, 2016, 28(5): 449-454. [7] 武睿, 郭卫鹏, 赵焱, 钟健宇, 甘振东, 梁恒, 李圭白. 纳滤工艺在浅层地下水处理中的应用研究[J]. 给水排水, 2020, 56(11): 9-14. [8] 吴玉超, 兰亚琼, 陈吕军, 刘锐. 纳滤工艺处理微污染原水的中试[J]. 净水技术, 2018, 37(11): 65-68. [9] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [10] 张正磊, 张俸志, 周伟伟, 成小翔, 朱学武, 丁怀宇. 纳滤工艺深度净化微污染水源水厂出水中试研究[J]. 中国给水排水, 2019, 35(15): 37-42. [11] BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2): 797-809. doi: 10.1016/j.watres.2010.09.005 [12] ATES N, KITIS M, YETIS U. Formation of chlorination by-products in waters with low SUVA-correlations with SUVA and differential UV spectroscopy[J]. Water Research, 2007, 41(18): 4139-4148. doi: 10.1016/j.watres.2007.05.042 [13] LIN Y L, CHIANG P C, CHANG E E. Removal of small trihalomethane precursors from aqueous solution by nanofiltration[J]. Journal of Hazardous Materials, 2007, 146(1/2): 20-29. [14] JIANG X, QU Y, ZHONG M, et al. Seasonal and spatial variations of pharmaceuticals and personal care products occurrence and human health risk in drinking water - A case study of China[J]. Science of the Total Environment, 2019, 694: 133711. doi: 10.1016/j.scitotenv.2019.133711 [15] 蔡孝楠, 刘宏远, 朱海涛, 孙海平, 张刚, 徐振峰. 纳滤膜处理微污染河网水中试研究[J]. 中国给水排水, 2021, 37(9): 27-32. [16] WANG Y Q, HU L X, ZHAO J H, et al. Suspect, non-target and target screening of pharmaceuticals and personal care products (PPCPs) in a drinking water system[J]. Science of the Total Environment, 2022, 808: 151866. doi: 10.1016/j.scitotenv.2021.151866 [17] 王丹丹, 张婧, 杨桂朋, 等. 药物及个人护理品的污染现状、分析技术及生态毒性研究进展[J]. 环境科学研究, 2018, 31(12): 2013-2020. [18] 聂铮, 刘彩虹, 刘乾亮, 等. 纳滤去除水环境中药品和个人护理品的研究进展[J]. 中国给水排水, 2021, 37(24): 45-50. [19] 黄裕, 张晗, 董秉直. 纳滤膜去除卡马西平的影响因素研究[J]. 环境科学, 2011, 32(3): 705-710. doi: 10.13227/j.hjkx.2011.03.012 [20] 张攀, 文湘华, 王波, 等. 纳滤生产再生水示范工程运行效果分析[J]. 环境工程学报, 2017, 11(9): 4985-4992. doi: 10.12030/j.cjee.201701044 [21] 丰桂珍, 董秉直. DOM纳滤膜污染及对膜截留卡马西平性能的影响[J]. 环境科学, 2013, 34(11): 4295-4303.