-
近年来,城市生活污水处理厂的污泥产生量逐年增加[1]。城市生活污泥的处理方法包括卫生填埋法、污泥焚烧法、海洋倾倒法和污泥堆肥法。其中,填埋法、焚烧法、倾倒法不仅会造成环境的二次污染,也会造成资源的浪费[2]。城市生活污泥中富含植物生长所必需的各种养分及有机质,是一种极其有效的生物资源[3]。因此,好氧高温堆肥是实现污泥资源化、减量化、无害化利用的有效途径之一[4],其主要是利用好氧微生物对有机废弃物中的可降解物质进行转化、分解[5-6]。郭广慧等[7]通过总结和分析国内外大量的研究,发现污泥堆肥产物含有丰富的有机质和氮、磷等营养元素,具有潜在的肥力,其产品是一种良好的有机肥料,可施用于农田能够有效提高氮、磷、钾等养分,为农作物生长提供养分并减少化学肥料的施用量[8]。
我国西北干旱地区降水少,水资源紧缺,生活污水处理后的中水是重要的可利用水资源。但污水处理过程中产生的生活污泥通常采用填埋法处理,亟需污泥资源化利用技术。该地区通常采用离心技术进行污泥脱水,其含水率高达90%,即使采用压滤板技术脱水,含水率仍为70%左右。高含水率生活污泥堆肥存在堆体升温慢、腐熟不彻底、养分损失大,且容易产生有毒有害气体等问题。因此,污泥堆肥过程中快速提高堆体温度、降低含水率和减少养分损失是西北干旱地区污泥堆肥亟需解决的关键问题。优化污泥堆肥技术参数是提高污泥堆肥效率和堆肥养分,减少有害气体排放的重要措施。
提高污泥堆肥的养分的质量分数是污泥资源化利用的研究热点。研究表明,生物强化可以提高堆肥氮素的质量分数[9],而添加花生壳炭则提高了堆体养分的吸附固持作用[3]。辅料种类对污泥好氧堆肥过程养分和升温速度有显著影响[10-13],稻草和秸秆升温快,而锯末处理的氮素损失小。辅料的粒径及比例对污泥堆肥产品的养分也有显著影响,小粒径秸秆生产的污泥有机肥养分高于大粒径;秸秆与污泥体积比为2:1时,堆体升温速度和腐熟度较好,堆肥产品养分的质量分数与污泥和秸秆的配比呈正相关,但随着污泥和秸秆配比的增加污泥堆肥处理的成本也显著增加[14-16]。
现有的污泥资源化利用实验主要集中辅料种类或辅料比例等单因素对污泥堆肥养分及腐熟度的影响,但综合多因素对污泥堆肥过程中C、N动态变化的研究鲜见报道。麦旭东等[17]通过正交实验研究了玉米掺混配比、秸秆粒径以及翻抛工艺3因素对污泥堆肥过程中堆体温度、含水率等的影响,并从降低堆体含水率和提高温度的角度提出了干旱区污泥堆肥的关键技术参数。但这些因素对堆体中有关C和N养分的质量分数动态变化过程却并不清楚。
本研究拟通过3因素3水平的正交实验,研究辅料玉米秸秆比例、秸秆粒径大小和翻抛工艺3个因素对污泥堆肥堆体有关C、N养分的质量分数和种子发芽指数的动态变化过程;并运用Topsis分析方法从堆体温度、含水率以及养分的质量分数的角度出发筛选出条垛式堆肥技术参数,以期为西北干旱地区生活污泥资源化利用提供参考。
辅料及翻抛工艺对干旱地区污泥堆肥C、N动态变化的影响
Effects of auxiliary materials and turning over technique on dynamic changes of C and N of sludge compost in northwest arid areas
-
摘要: 针对我国西北干旱地区污泥堆肥过程中存在养分损失较大和腐熟度差的问题。采用正交实验的方法开展大型条垛堆肥,研究辅料参数及翻抛工艺对堆肥过程中C和N养分动态变化的影响,并利用Topsis分析筛选最优处理,达到当地污泥堆肥过程中减少养分损失和提高腐熟度的目的。结果表明,当玉米秸秆配比为15%时,全氮损失量最小,为3.67%。硝态氮的质量分数在堆肥阶段呈持续上升的趋势,铵态氮的质量分数在堆肥过程中先增加后减小,在堆肥结束时,堆体硝态氮和铵态氮的质量分数均随着秸秆配比的增加而减小,质量分数分别为0.99 g·kg−1和0.78 g·kg−1。堆体有机质的质量分数随着秸秆配比增加而增加,15%秸秆的有机质的质量分数比10%和5%秸秆的分别增加了10.08%和6.61%;堆肥过程中堆体C/N比整体呈现W型变化趋势,结束时堆体C/N比随秸秆配比增加而减小。种子发芽指数 (GI) 随着秸秆配比增大而增加,当玉米秸秆配比为15%时,种子发芽指数均超过100%。Topsis分析表明,最优条垛式堆肥处理为T7 (15%秸秆配比+5 cm秸秆粒径+常规翻抛) ,是一种适合西北干旱地区的条垛式污泥堆肥方法。本研究结果可为该地区的生活污泥条垛式堆肥提供参考。Abstract: In order to solve the problems of high nutrient loss and poor maturity in sludge composting in arid area of northwest China, a large-scale sludge composting experiment was carried out to study the effects of auxiliary material parameters and turning-over technology on the dynamic changes of C and N nutrients of compost during the composting period, and then Topsis analysis was used to screen the optimal treatment. Results showed that when the ratio of corn straw was 15%, the total nitrogen loss was the smallest, which was 3.67%. The nitrate nitrogen content of compost increased continuously during the composting period, while the ammonium nitrogen content increased first and then decreased. At the end of composting, the content of nitrate nitrogen and ammonium nitrogen decreased with the increase of straw ratio, which were 0.99 g.kg−1 and 0.78 g.kg−1, respectively. The organic matter content of compost increased with the increase of straw ratio, and the organic matter content of 15% straw increased by 10.08% and 6.61% compared with that of 10% and 5% straw respectively. The C/N ratio of compost showed a W-shaped change trend during the composting process and it decreased with the increase of straw ratio at the end. The seed germination index (GI) increased with the increase of straw ratio. When the ratio of corn straw was 15%, the seed germination index exceeded 100%. Topsis analysis showed that the optimum compost treatment was T7 (15% straw ratio+5 cm straw particle size+conventional turning over), which might be a suitable strip-stack composting method for arid areas in northwest China. The results of this study can provide theoretical basis and technical support for sludge window composting in this area.
-
Key words:
- domestic sludge /
- window composting /
- organic matter /
- total nitrogen /
- parameters optimization
-
表 1 原材料初始基本性状
Table 1. 1The initial basic properties of raw materials
供试原料 含水率/% 有机质/% 全氮/% 全碳/% 砷/(mg∙kg−1) 镉/(mg∙kg−1) 汞/(mg∙kg−1) 铅/(mg∙kg−1) 铬/(mg∙kg−1) 污泥 74.18 62.25 4.85 31.05 10.70 0.28 7.58 33.00 79.50 秸秆 11.61 81.72 1.08 42.14 — — — — — 表 2 正交实验设计
Table 2. The design of orthogonal experiment
处理
编号A (玉米秸秆
配比/%)B (玉米秸秆
粒径/cm)C (翻抛
工艺)T1 A1 (5) B1 (5) C1 (静置6d翻抛) T2 A1 (5) B2 (3) C2 (常规翻抛) T3 A1 (5) B3 (15-20) C3 (曝气常规翻抛) T4 A2 (10) B1 (5) C3 (曝气常规翻抛) T5 A2 (10) B2 (3) C1 (静置6 d翻抛) T6 A2 (10) B3 (15-20) C2 (常规翻抛) T7 A3 (15) B1 (5 ) C2 (常规翻抛) T8 A3 (15) B2 (3) C3 (曝气常规翻抛) T9 A3 (15) B3 (15-20) C1 (静置6d翻抛) 表 3 铵态氮的质量分数极差分析
Table 3. Analysis of mass fraction range of ammonium nitrogen
因素 平均K1j 平均K2j 平均K3j Rj A 1.19 1.05 0.78 1.23 B 1.01 0.96 1.04 0.24 C 0.98 1.01 1.02 0.1 表 4 全氮损失量极差分析
Table 4. Range analysis of total nitrogen reduction
因素 平均K1j 平均K2j 平均K3j Rj A 16.47 19.59 21.55 17.22 B 19.00 19.00 20.00 2.00 C 19.10 18.72 19.79 3.21 表 5 有机质减少量极差分析
Table 5. Range analysis of organic matter reduction
因素 平均K1j 平均K2j 平均K3j Rj A 39.13% 40.97% 42.07% 8.82% B 40.38% 41.42% 40.35% 3.21% C 40.72% 40.56% 40.89% 0.99% 表 6 不同处理的综合评价排名
Table 6. Comprehensive evaluation ranking of different treatments
处理编号 D+ D− Ci 排序 T1 0.572 0.132 0.187 9 T2 0.536 0.288 0.350 6 T3 0.527 0.133 0.201 8 T4 0.386 0.302 0.439 4 T5 0.396 0.260 0.396 5 T6 0.442 0.236 0.348 7 T7 0.234 0.460 0.663 1 T8 0.268 0.429 0.615 3 T9 0.277 0.520 0.652 2 -
[1] 季俊杰, 葛丽英, 陈娟, 等. 氧化塘底泥与稻草堆肥过程中养分变化研究[J]. 环境科学导刊, 2007(1): 11-13. [2] 张桥, 吴启堂, 黄焕忠, 等. 未消化城市污泥与稻草堆肥过程中的养分变化研究[J]. 农业环境科学学报, 2002(6): 489-492. [3] 岳建芝, 常兴涛, 李辉, 等. 花生壳炭对污泥堆肥营养元素和重金属动态变化的影响[J]. 河南农业大学学报, 2019, 53(6): 950-958. [4] 焦常锋, 常会庆, 朱晓辉, 等. 脱水污泥堆肥过程中养分、有机质与重金属的变化特征[J]. 江苏农业科学, 2019, 47(19): 255-260. [5] 任省涛, 郭夏丽, 芦阿虔, 等. 林可霉素菌渣堆肥微生物群落多样性分析[J]. 环境科学, 2018, 39(10): 4817-4824. [6] 韦忠, 高华军, 范东升, 等. 生物质颗粒燃料烘烤烟叶的效果分析[J]. 南方农业学报, 2017, 48(12): 2228-2233. [7] 郭广慧, 陈同斌, 雷梅, 等. 污泥堆肥产物在农业利用中的潜力和问题[J]. 中国给水排水, 2016, 32(20): 34-38. [8] 牛明杰, 郑国砥, 朱彦莉, 等. 城市污泥与调理剂混合堆肥过程中有机质组分的变化[J]. 植物营养与肥料学报, 2016, 22(4): 1016-1023. doi: 10.11674/zwyf.15463 [9] 成庆利, 王大伟, 牛渤超, 等. 酶解预处理联合生物强化优化城市污泥好氧堆肥[J]. 生态环境学报, 2021, 30(12): 2395-2401. [10] 贺亮, 赵秀兰, 李承碑. 不同填料对城市污泥堆肥堆体温度动态变化影响[J]. 西南农业大学学报(自然科学版), 2016(3): 389-392. [11] GAO W X, LIANG J F, LETICIA Pizzul, et al. Evaluation of spent mushroom substrate as substitute of peat in Chinese biobeds[J]. International Biodeterioration & Biodegradation, 2015, 98: 107-112. [12] MAHNAZ N, AMIR H N, BIJAN B, et al. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting[J]. Waste Management, 2015, 39: 104-110. doi: 10.1016/j.wasman.2015.01.028 [13] FEI C, SIGRID P, AHMED M E, et al. Kinetics of natural organic matter (NOM) removal during drinking water biofiltration using different NOM characterization approaches[J]. Water Research, 2016, 104: 361-370. doi: 10.1016/j.watres.2016.08.028 [14] 贾程. 污泥与秸秆堆肥过程中氮、磷形态变化研究[D]. 西北农林科技大学, 2008. [15] 康军, 张增强, 张维, 等. 玉米秸秆添加比例对污泥好氧堆肥质量的影响[J]. 武汉理工大学学报, 2010, 32(2): 172-176. doi: 10.3963/j.issn.1671-4431.2010.02.041 [16] 李清秀, 张雁秋, 李向东. 污泥与稻草混合堆肥研究[J]. 江苏农业科学, 2008(6): 260-261+300. [17] 麦旭东, 谭军利, 王西娜, 等. 干旱地区辅料及工艺对污泥堆肥物理指标动态变化的影响[J]. 环境工程学报, 2022, 16(8): 2682-2690. [18] 全国农业技术服务推广中心. 土壤检测第6部分土壤有机质的测定: NY/T 1121.6-2006[S]. 北京: 中国标准出版社, 2006. [19] 宋守法, 董俊才. 紫外分光光度法测定肥料中硝态氮含量的试验研究[J]. 化肥工业, 1984(3): 25-28. [20] 鲍艳宇, 周启星, 颜丽, 等. 鸡粪堆肥过程中各种氮化合物的变化及腐熟度评价指标[J]. 农业环境科学学报, 2007(4): 1532-1537. [21] 牛明芬, 于海娇, 武肖媛, 等. 猪粪秸秆高温堆肥过程中物质变化的研究[J]. 江苏农业科学, 2014, 42(9): 291-293. [22] 王欢, 郑华伟, 刘友兆. 基于DPSIR-TOPSIS模型的安徽省耕地资源利用系统健康诊断[J]. 水土保持通报, 2019, 39(1): 147-153. [23] 闫实, 郭宁, 韩贵成, 等. 牛粪与蔬菜秸秆堆肥氮转化及温室气体排放研究[J]. 中国农技推广, 2019, 35(11): 63-67+54. [24] 耿立威, 高尚, 田沛东, 等. 城市污水处理污泥堆肥过程中氮元素形态变化研究[J]. 吉林师范大学学报(自然科学版), 2013, 34(2): 114-117. [25] 张琳, 刘新平, 常会庆, 等. 脱水污泥和小麦秸秆共堆肥过程中有机质转化研究[J]. 江苏农业科学, 2018, 46(2): 243-247. [26] 韩相龙, 吴薇, 赵鹏博, 等. 不同碳氮比对烟梗与牛粪堆肥过程的影响[J]. 江苏农业科学, 2019, 47(16): 303-307. doi: 10.15889/j.issn.1002-1302.2019.16.065 [27] 黄光群, 黄晶, 张阳, 等. 沼渣好氧堆肥种子发芽指数快速预测可行性分析[J]. 农业机械学报, 2016, 47(5): 177-182. doi: 10.6041/j.issn.1000-1298.2016.05.024